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ABSTRACT 

The subject of allometry is variation in morphometric variables or other features of 
organisms associated with variation in size. Such variation can be produced by several 
biological phenomena, and three different levels of allometry are therefore distinguished: 
static allometry reflects individual variation within a population and age class, ontogenetic 
allometry is due to growth processes, and evolutionary allomctry is thc rcsult of phylogcnctic 
variation among taxa. Most multivariate studies of allometry have used principal component 
analysis. I review the traditional technique, which can be interpreted as a least-squares fi t  of 
a straight line to the scatter of data points in a multidimensional space spanned by the 
morphometric variables. I also summarize some recent developments extending principal 
component analysis to multiple groups. "Size correction" for comparisons between groups 
of organisms is an important application of allometry in morphometrics. I recommend use 
of Bumaby's technique for "size correction" and compare it with some similar approaches. 
The procedures described herein are applied to a data set on geographic variation in the 
waterstrider Gerris costae (Insecta: Heteroptera: Gcrridac). In this cxamplc, I use the 
bootstrap technique to compute standard errors and perform statistical tcsts. Finally, I 
contrast this approach to the study ofallometry with some alternatives, such as factor analytic 
and geometric approaches, and briefly analyze the different notions of allometry upon which 
these approaches are based. 

INTRODUCTION 

Variation in sizc of organisms usually is associated with variation in shape, and most 
mctric charactcrs arc highly corrclatcd among one another. These associations are the subject 
of allometry (Huxley, 1932; Cock, 1966; Gould, 1966, 1975). Although allometry is often 
used to examine the consequences of size for ecological or physiological variables (Giinther, 
1975; LaBarbera, 1989; Reiss, 1989), this review deals only with measurements of traits 
used to characterize the morphological form of organisms. 
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Unlike other approaches in morphometrics, which are built on geometric theory, 
allometry has a largely empirical basis. Huxley (1932) realized that scatter plots of two trait 
measurements in growing organisms often closely follow a curved line, and that this 
relationship usually bccomes linear if both measurements are transformed to logarithms. 
From this, he derived his formula of simple allometry 

or, in log-transformed notation, 

logy = log h + a log .r, 

where x and y are trait measurements, and h and a are constants. The constant a, the slope 
in log-log plots of s and y, is often called the allometric coefftcient (terminology is not 
uniform; some authors call b cocfficicnt). The special case when a = I is called isometry, 
and indicates direct proportionality between x and J J .  If a > 1, there is positive allometry, 
whereas for negative allometry, a < 1 (Huxley and 'I'eissier, 1936). In humans, for example, 
the long bones of the limbs show positive allometric growth relative to overall stature, and 
the height of the head shows negative allometry. 

In most morphometric data sets, measurements are positively correlated, i.e., .u and 
JI increase or decrease simultaneously. Even if there is negative allometry, a still is positive; 
negative allometry implies only that the relative variation in y is smaller than that in x, e.g., 
v grows by 10% for every 20% growth increment in x.  If a is negative, however, there is an 
absolute reduction in y associated with an increase in x. This case is called enantiometry 
(Huxley and Teissier, 1936). Reduction of the absolute size of organs during growth is a real 
phenomenon, although it is not found commonly in morphometric studies. The most striking 
example is the shrinking of larval structures during metamorphosis, e.g. the gills and tail of 
anuran tadpoles; but in a subtler way, enantiometry even occurs in cranial growth of primates 
(Comer and Richtsmeier, 199 1). 

Huxley's approach is not restricted to pairs of measurements. In many multivariate 
data sets, log-log plots of all pairwise combinations of morphometric variables show 
approximately linear relationships. Therefore, Huxley's bivariate allometry can be gen- 
eralized to multiple dimensions. Moreover, it is not confined to growth data, as straight-line 
relationships are also found in log-log plots of intra- and interspccific variation within 
one particular ontogenetic stage (most often adults). From this pcrspcctivc of allometry, 
some major questions follow: How much variation is there? Are the data points clustered 
around a straight line and, if so, how closely? What is the direction of that line in 
multidimensional space? Do different groups of organisms share the same allometric 
relationship? 

In this paper I review concepts and techniques used in studies of multivariate 
allometry. First, 1 introduce the main levels of variation that have been the subject of 
allometric studies within and between species,. Then, I present the multivariate generaliza- 
tion of allometry using principal component analysis and some more recent developments, 
such as the bootstrap and techniques dealing with multiple groups. Finally, I briefly contrast 
some alternative approaches to allometry. 

LEVELS OF ALLOMETRY 

Huxley (1932) devised allometry mainly as a tool to study the relative growth of parts 
in various organisms. Growth, however, is not the only origin of variation in overall size and 
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Figure 1 .  The three levels of allometry. The diagram shows thrcc spccics, cach with four different ontogeneric 
stages, that are considered to be homologous among species. Rectangles enclose the species and stage groups 
included in an analysis of allornetry at each of the three levels. Ontogcnctic allometry can be separately 
analyzed for all three species, evolutionary allo~netry for each of the four stages, and static allornetry for each 
of the 12 species and stage groups. 

associated variation in shape, because evolutionary changes and individual variation also can 
generate allometric relations. These levels or types of allometry have been included in 
elaborate classification schemes (see Cock, 1966; Gould, 1966, 1975). Because of its 
simplicity, I prefer the terminology proposed by Cock (1966) who distinguished static, 
ontogenetic and evolutionary allometry (Fig. 1). This classification has also been used in 
most empirical comparisons between levels of allometry (Cheverud, 1982; Leamy and 
Bradley, 1982; Roag, 1984; Gibson et al., 1984; Leamy and Atchley, 1984a; Shea, 1985; 
Klingenberg and Zimmermann, 1992a). 

Static Allometry. Static allometry, which is also referred to as size allometry, results 
from variation among individuals of the same population and age group (intraspecific 
scaling, Gould, 1975). Static allometry is particularly easy to study in organisms with discrete 
growth stages, such as insects (Cuzin-Roudy, 1975; Klingenberg and Zimmermann, 1992a), 
or in adults of organisms with determinate growth, such as birds (Boag, 1984; Gibson et al., 
1984). These studies, among others, found that the largest proportion of multivariate 
variation is contained in one dimension, and that the model of simple static allometry 
therefore is appropriate. This phenomenon has been tcrmcd morphomctric or phenotypic 
integration (e.g., Leamy and Atchley, l984b; Zelditch, 1987, 1988; Zelditch and Carmichael, 
1989). Although there is an extensive literature describing static allometry and morphometric 
integration, relatively little is known about their developmental basis (but see Cowley and 
Atchley, 1990; Atchley and Hall, 199 1 ; Shea, 1992; Paulsen and Nijhout, 1993). In theoreti- 
cal models, Riska (1 986) explored how developmental processes can affect static correlations 
among the traits they produce (see also Cowley and Atchley, 1992). Patterns of static 
allometry have sometimes been used to deduce underlying developmental processes (e.g., 
Zelditch, 1987; Wheeler, 199 1). Such inferences, however, should be substantiated by direct 
observations. 
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Ontogenetic Allometry. Ontogenetic allometry or growth allometry deals with co- 
variation among characters during growth. Simple allometry occurs if the ratio between the 
specific growth rates (percentage increment per time unit) of two different characters is 
constant (Huxley, 1932; Reeve and Huxley, 1945; Shea, 1985; Blackstone, 1987). Theoreti- 
cal studies showed that various models of growth as a function of time can result in simple 
allometry (e.g., Laird, 1965; Laird et al., 1968; Katz, 1980). The rule of simple allometry 
holds often, but not always, as Huxley (1932) demonstrated with an impressive list of 
bivariate examples. Correspondingly, multivariate studies often find that one dimension 
contains the largest proportion ofthe total variation, sometimes more than 99% (e.g., Jungers 
et al., 1988; Solignac et al., 1990; Strauss, 1990b; Klingenberg and Zimmermann, 1992a). 
Some studies, however, show clear deviations from simple allometry in certain structures 
(Cuzin-Roudy and Laval, 1975; Boag, 1984; Cane, 1993) or subtle curvatures of growth 
trajectories in the space of log-transformed characters (Bookstein, 1991 : Figs. 4.2.2 to 4.2.4; 
Klingenberg and Zimmermann 1992a; Klingenberg and Spence, 1993). Studies of plant 
growth showed particularly strong deviations from simple allometry (e.g. Kampny et al., 
1993; McLellan, 1993). Three types of data are used to study ontogenetic allometry: 
longitudinal data based on measurements of the same individuals at several developmental 
stages, cross-sectional data with different specimens in several known stages, and mixed 
cross-sectional data collected without information on ontogenetic stage (Cock, 1966). 

Evolutionary Allometiy. Evolutionary allometry reflects covariation among changes 
in different traits along the branches of a phylogeny. It is concerned with character covaria- 
tion among contemporaneous species sharing a common ancestor (Fig. 2a) or among fossil 
members of an evolutionary lineage (Fig. 2b). I do not distinguisli separate levels for analyses 
that use these two typcs of data (for different terminology, see Gould, 1966). Evolutionary 
processes leading to the associations between trait changes presumably do not differ 
depending on whether these changes occur within one lineage successively or in different 
lineages giving rise to sister groups. It is important to use specimens in comparable 
ontogenetic stages to avoid confounding evolutionary and ontogenetic variation. This is 
straightforward in organisms with determinate growth, such as birds or insects (e.g., Livezey, 
1989; Strauss, 1990a; Klingenberg and Zimmermann, 1992a), but it is more difficult in 
organisms with indeterminate growth, for which some studies assume that specimens are 
"typical" for the respective species (e.g., Strauss, 1985). In these studies, among others, the 
model of simple allometry fits the data fairly well, indicating that evolutionary variation is 
constrained in its dimensionality (Maynard Smith et al., 1985; Gould, 1989; Arnold, 1992). 
Some of this covariation among traits may be determined by devclopmental processes, as 
Riska (1 989) showed with a simulation study. 

Figure 2. Types of data for evolutionary allometry. (a) In neontological studies, the data always are measure- 
ments taken on recent species from several lineages in a clade, that are related as sister groups rather than 
ancestors and descendants. (b) In paleontological studies, evolutionary allometry often refers to character 
covariation among members of a single evolutionary lineage. Because it is difficult to distinguish with certainty 
whether two fossil species are related as ancestor and descendant or as sister groups, many of these studies 
may in fact use designs that are mixtures of (a) and (b). 
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Figure 3. lllfluence of the correlation between characters on the robustness of evolutionary allometry. For 
simplicity, I assume that the species are members of a single evolutionary lineage (as in Fig. 2b). (a) If the 
traits are highly correlated, most morphometric variation is in a single direction. Estimates of evolutionary 
allomctry, the "average" direction of evolutionary changes, will yield almost the same result regardless oP thc 
phylogenetic rclations among spccics (i.c., how the points are connected). (h) If the correlation hetween traits 
is low, however, the "average" direction of changes depends strongly on the phylogenetic scenario, i.e., on how 
the polnts are connected. The solid and dashed lines represent two alternative hypotheses of ancestor-descen- 
dant relationsh~ps, which have drastically different directions of evolutionary changes. 

Evolutionary allometry, like all interspecific comparisons, presents some statistical 
problems because the species are not independent of one another but are parts of a 
hierarchically structured phylogeny (e.g., Felsenstcin, 1985; Pagcl and Harvey, 1988). This 
interdependence is most evident for species presumed to be members of a single, unbranched 
lineage (Fig. 2b), but it also applies to comparisons among terminal taxa in a clade. A possible 
solution is the method of phylogenetically independent contrasts (Felsenstein, 1985; Martins 
and Garland, 1991; Garland et al., 1992), which analyzes character changes along the 
branches in the phylogeny instead of the measurements (character states) of terminal taxa. 
Changes are either directly measured, if actual ancestor4escendant series of fossils are 
available, or inferred by indirect methods such as parsimony or maximum likelihood. This 
approach requires knowledge of the phylogeny of the group under consideration and a 
multivariate theory for reconstructing state vectors of quantitative characters for internal 
nodes, which still needs to be developed (for univariate approaches, see Maddison and 
Maddison, 1992). For morphometric data, however, the problem of phylogenetic dependence 
may not be as severe as for other data types, because often most of the variation is in a single 
dimension. These high correlations make estimates of the direction of evolutionary changes 
relatively robust against errors in phylogenetic reconstruction (Fig. 3). 

Further levels of allometry exist in organisms with modular organization, such as 
colonial animals and most vascular plants. In addition to the ontogeny of individual zooids, 
colonial animals have an additional level of colony wide development, which is called 
astogeny (e.g., Pandolfi, 1988). Buss and Blackstone (1991) showed that colony growth in 
a marine hydroid follows well-determined trajectories and that colonies react to experimental 
perturbations in an integrated manner (see also Anstey, 1987). Similarly, the structure of 
plant parts changes with the age of the entire plant (heteroblasty; e.g., McLellan, 1993). 
Jones ( 1  992, 1993) studied correspondences between the development of individual leaves 
and the succession of leaves during whole-plant ontogeny. New methodological approaches, 
such as "process morphology" (Sattler, 1992; Jeune and Sattler, 1992), reflect the morpho- 
logical flexibility of modular organization in plants but are only semiquantitative and cannot 
be directly related to allometry (a similar approach in zoology is the "skeleton spacc," 
Thomas and Reif, 1993). 
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The causes of allometric variation at different levels are mutually interrelated. Static 
variation, which is caused by variation in ontogenetic processes that produce the structures 
of interest, is the raw material upon which natural sclcction can act. Response to selection, 
in turn, generates evolutionary changes affecting thc dcvclopmental processes. One way to 
study these interactions is to compare empirically the patterns of variation between different 
levels of allometry. Various such comparisons have been made (Cheverud, 1982; Leamy and 
Bradley, 1982; Boag, 1984; Gibson et al., 1984; Leamy and Atchley, 1984a; Shea, 1985; 
Klingenberg and Zimmermann, 1992a). Most of these studies found that patterns of al- 
lometry at different levels were similar but not cqual. It is not possible, however, to make 
further generalizations of the results because the studies differ widely in the kinds of data 
and methods used. As an alternative to this observational approach, the mechanisms that are 
the basis of allometric variation can be investigated by experimental techniques. e.g., using 
genetically engineered organisms (Shea et al., 1990) or directly manipulating the size of eggs 
or embryos (Sinervo, 1993). 

PRINCIPAL COMPONENTS AND ALLOMETRY 

Under the model of simple allometry, bivariate plots of pairs of log-transformecl 
morphornetric variables are straight lines. If there are thrcc variablcs. and all pairwise 
combinations satisfy this condition, then the data points follow a line in the three-dimensional 
space defined by the variables. This argument can be extended to more than three variables: 
data points still are arranged along a straight line under simple allometry (e.g., Teissicr, 
1955), but this line now is in the multidimensional space defined by all the variables. 
Therefore. dimensionality of morphometric variation is a prime concern of allometry (e.g., 
Hopkins, 1966; Sprent, 1972). As in bivariate allometry, points may be scattered around the 
line, rather than exactly lying on it, and one has to find a line that "optimally" fits the scatter 
of data points (Pearson, 1901). Jolicoeur (1963) proposed the first principal component, 
estimated from the covariance matrix of log-transformed measurcrnents, as a multivariate 
generalization of simple allometry. 

Many texts of multivariate statistics introduce principal componcnt analysis (PCA) 
as a technique for summarizing most of the variation in a multivariate data set in fewer 
dimensions (e.g., Pimentel, 1979; Jolliffe, 1986; Flury, 1988; Flury and Riedwyl, 1988; 
Johnson and Wichern, 1988; Jackson, 1990; Jobson, 1992). The first principal component 
(PCI) is the linear combination that accounts for the maximum variance. Geometrically, it 
corresponds to the direction of the longest axis through the scatter of data points. Subsequent 
principal components take up maximal variance, subject to being orthogonal to all preceding 
component axes. 

Fig. 4 shows a contour ellipse of the bivariate distribution of two variables XI and X, 
with its centroid (mean vector) at the point labeled 0. For simplicity, data are centered by 
subtracting the means of XI and X2, which shifts the coordinate system to the new axes .Y, 

and x2 each with a sample mean of zero. Therefore, the x l  and .Y, values themselves are the 
dcviations from their mean; their sample variances can be calculated as the sum of squared 
x ,  and x2 values divided by (n - 1). In Fig. 4, one data point is labeled P, and its projection 
onto thex, axis is Q. The sum of squaredx, values is the sum of the squared distances between 
0 and Q for all data points. By the same argument, the sum of squared s2 values corresponds 
to the sum of squared distances between P and Q. According to the Pythagorean theorem, 
the squared distance between 0 and P is the sum of the squared distances between 0 and Q 
and between P and Q. It follows that the sum of the squared distances of all data points from 
the sample centroid, divided by (n - I), is the sum of the variances of .Y, and x2, or total 
variance. Now, consider the same data set after rotating the coordinate system to the 
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Figure 4. Principal component analysis. The diagram shows the contour ellipse of a bivariate distribution with 
its centroid at the point labeled 0. The ccntcred coordinates .rl and x2 are derived from the original variables 
XI and X2 by subtracting their mean values. The principal components yl and y2 are the directions of maximal 
and minimal variancc, rcspcctively. See text for details. 

directions of the principal component axes y ,  and y 2  Because the PC 1 axis, v , ,  is defined as 
the direction that has maximal variance, the sum of the squared distances between 0 and R, 
thc projection of P onto the PC1 axis, is maximal. Because the rotation of lhe coordinate 
system does not change the distances between the data points and the centroid, maximizing 
the sum of squared distances between 0 and R also results in minimizing the sum of squared 
distances between P and R. The sum of squared distances between P and R, divided by (n - 
I), is the part of the tola1 variance not accounted for by the PC1, i.e., the residual variance. 
This argument also holds for more than two dimensions: because the PC1 is the direction 
that has maximal variance, all other principal components taken together have minimal 
variance. Hence, the PC1 axis can be seen as a least-squares f i t  of a straight line to the scatter 
of data points in the space of log-transformed, bivariate or multivariate data. This justifies 
Jolicoeur's (1 963) multivariate generalization of allometry (see also Hopkins, 1966). 

PCA decomposes a covariance matrix S into eigenvectors and eigenvalues, so that S 
= BLB'. The matrix R of eigenvectors is used to transform the original data X into a set of 
new variables Y = XB, the principal components (PCs). The matrix L is the covariance 
matrix of the PCs, and as the PCs are uncorrelated among each other, all off-diagonal 
elements of L are zero. The diagonal elements of L, the eigenvalues, are the variances for 
which the associated eigenvectors account. They are dificult to interpret by themselves, 
because they depend on the measurement units and the base of the logarithm uscd to 
transform the data. However, the proportion of the total variance for which the PC1 accounts 
is important to assess how well the model of simple allometry fits the data. 

Principal component analysis can be interpreted geometrically as a rotation of the 
coordinate system. The PC axes are aligned with the directions of the axes of the multidi- 
mensional "scatter ellipsoid" (in two dimensions, this is an ellipse, Fig. 4). The PC 
coefficients of the original variables can be interpreted as "direction cosines," i.e., the cosine 
of the angle between the PC axis and the coordinate axis of the respective variable ( u  for 
PC1 and r l  in Fig. 4). Principal component axes are rnutually orthogonal, and the vectors of 
PC coefficients are usually normalized to have unit length so that the squares of the 
coefficients sum up to unity (b'b = I ,  where b is an eigenvector). As a result, the coefficient 
values depend on the number of variables. Nevertheless, translating PC coefficients to 
bivariate allometric coefficients (Huxley's a )  is quite easy (Jolicoeur, 1963; Shea, 1985). 
The ratio of PC1 coefficients for two variables corresponds to the variables' bivariate 



allometric coefficient. For example, in a study of two species of voles. Airoldi and Flury 
(1 988) found that the PC 1 coefficients of skull length, width and height were approximately 
213,213, and 113, respectively. Thus, in allomctric plots with skull length as the independent 
variable, skull width would be isometric with a slope of about 1, whereas skull height, with 
a slope of about 0.5, would show strong negative allometry. Withp variables, isometry in all 
painvise combinations of variables results in a PC 1 in which all coefficients are equal, and 
have the value 1 divided by the square root of p, i.e., p-O 5 .  Isomctry can be assessed with 
Anderson's (1963) test, which is based on normal theory (Pimentel, 1979: 70; Flury, 1988: 
34), or by comparison with jackknifed or bootstrapped confidence intervals (see below; e.g., 
Diaconis and Efron, 1983; Gibson et al., 1984; Klingenberg and Zimmermann, 1992a). 
Multiplying PC1 coefficients by the square root o f p  yields values that can be interpreted as 
bivariate allometric coefficients for each of the variables against a measure of overall sizc (a 
weighted geometric mean of all variables). These allometric coefficients or the principal 
component coefficients can be graphed as Huxley's (1 932) growth gradients (e.g., Boitard 
et al., 1982; Solignac et al., 1990), or they can be displayed on diagrams ofthe measurements. 
such as the truss network (Strauss and Bookstein, 1982; Bookstein et al., 1985). Another 
type of graphical display for PC coefficients is the biplot (e.g., Marcus, 1993). 

Empirical comparisons of bivariate and multivariate approaches found that both 
estimated corresponding patterns of allometry (Davies and Brown, 1972; Shea, 1985). 
Jungers and German (1 98 1) criticized the multivariate approach because allometric coeffi- 
cients derived from principal components of skeletal measurements did not match those from 
bivariate regressions on a known variable for size that was not included in the analysis, either 
body weight or length. Hills (1982) showed that these discrepancies disappear if one 
considers allometry between the traits and the size measure that is taken as a reference, e.g., 
between skeletal size and body weight. 

It is possible to perform PCA by use of a correlation matrix instead of a covariance 
matrix (see also Pimentel, 1979; Bookstein et al., 1985; Johnson and Wichern, 1988). This 
corresponds to an analysis of standardi~ed variables. Geometrically, it means that all the 
variables are adjusted to have standard deviations of 1 by stretching or shrinking their 
coordinate axes before the analysis. This maneuver can be used to remove scaling effects if 
variables are measured in different units. Standardizing may also be useful ifone is interested 
in only ordination of specimens, as in some applications in systematics, where giving equal 
weight to all variables may be more important than scaling. For allometry, however, scaling 
is essential. After removing scale by standardization one still can determine whether the data 
points lie along a straight line, but it is impossible to estimate allometric coefficients because 
standardization changes the direction of the allometric axis. A simple hypothetical example, 
constructed from purely allometric variation without any residual scatter, can show this. Let 
the multivariate allometric coefficients (eigenvector) be 213, 213 and 113; these coefficients 
correspond to strong deviations from isometry. Then, the covariancc matrix is a multiple of 

and the correlation matrix is 
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The PC1 of this correlation matrix has coefficients that all take the value 3-05, and 
thus falsely indicate isometry, with no residual variation at all (see also Johnson and Wichern, 
1988: 350). Likewise, in allometric interpretations of PCAs based on correlation matrices 
of real data (e.g., Teissier, 1955; Somers, 1986), all "non-isometric" variation that may be 
inferred from PC1 coefficients merely results from the residual scatter about an allometric 
relationship, but does not reflect allometry. Therefore, it is crucial to use the covariance 
matrix for allometry. Routines for PCA in many statistical software packages use the 
correlation matrix as the default option. Users of these programs should make sure to specify 
the option for PCA based on the covariance matrix. 

A related point is the transformation of data to logarithms. There are numerous 
practical and theoretical reasons why it is often useful to transform data to logarithms 
(Pimentel, 1979; Reyment et al., 1984; Bookstein et al., 1985; Bookstein, 199 1 ; Reyment, 
1991). For ontogenetic allometry, Huxley (1932) justified the use of power functions, and 
therefore also of logarithms, by his rule of constant ratios among specific growth rates of 
different organs (see also Reeve and Huxley, 1945; Giinther, 1975; Katz, 1980; Bookstein 
et al., 1985; Shea, 1985; Blackstone, 1987). Such a theoretical justification, however, is more 
difficult to find for static and evolutionary allometry. The multiplicative nature of growth 
processes also may be important for these levels because all variation in morphological 
structures is due to variation in the developmental processes that generate them. Mosimann 
(1970) and Mosimann and James (1979) pointed out statistical advantages of the log-normal 
distribution (but see Smith, 1993, for biases in predicted values from allometric regression). 
In practice, log transformation often renders relations among variables more linear and also 
can make variances more homogeneous. Finally, log-transformed data are independent of 
measurement units (e.g., millimeters or the units of an eyepiece micrometer) but retain the 
information about scale (e.g., lengths versus surfaces). It does not matter which base for the 
logarithms is chosen, as long as the same base is used consistently throughout a given 
analysis. 

Results of PCAs are estimates of allometric patterns in the populations from which 
the study samples are drawn. To assess how reliable these estimates are, standard errors or 
confidence intervals should be calculated. Formulas for these statistics (e.g., Flury and 
Riedwyl, 1988) are based on the assumption of multivariate normal distribution and on large 
sample sizes. In most allometric studies, however, the distribution of data cannot be assumed 
to be multivariate normal. In ontogenetic allometry, for example, the distribution of meas- 
urements depends on the age composition in the sample, as well as on the growth dynamics 
of the structures investigated. In these cases, the bootstrap and jackknife procedures are 
helpful (an excellent introduction is Efron and Tibshirani, 1993; other useful references are 
Diaconis and Efron, 1983; Efron and Gong, 1983; Efron and Tibshirani, 1986; Manly, 199 1). 
The bootstrap is a computer-intensive procedure that substitutcs repcatcd sampling from the 
sample distribution for a theoretical model of that distribution. Thc only assumption that 
must be made is that the specimens have been sampled randomly. Applications of the 
bootstrap to PCA include Diaconis and Efron (1983), Stauffer et al. (1985), Daudin et al. 
(1988), and Efron and Tibshirani (1993). In multivariate allometry, Gibson et al. (1984) and 
McGillivray (1  985) used the jackknife, whereas Klingenberg and Froese (199 1) and Klin- 
genberg and Zimmermann (1 992a, b) used the bootstrap. Marcus ( 1  990) compared the 
jackknife and the bootstrap with each other and with results from large-sample theory. 

The fundamental idea of the bootstrap, and the procedures to apply it, follow 
immediately from the definitions of standard errors and confidence intervals for a statistic q 
(e.g., mean value or PC coefficients) estimated from a sample of n specimens. Both standard 
errors and confidence intervals provide answers to the same question: If the same study were 
repeated numerous times, estimating q from a sample with n specimens each timc, how 
variable would the estimates be? The standard error of a statistic is the standard deviation of 
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these estimates and a confidence interval is the interval containing a certain percentage of 
the estimates (e.g., the 95% confidence interval is delimited by the 2.5% and 97.5% 
quantiles). This is exactly what the boorstrap does, assuming that the san~ple distribution is 
representative of the totality of organisms about which statements are made (e.g., all 
members of a local population or all females of a species). Repeatedly, a "bootstrap sample" 
of n specimens is drawn randomly, with replacement, from the original sample, and q is 
estimated for each bootstrap sample. The standard deviation of these estimates is the 
bootstrapped standard error, and confidence intervals can be derived from the distribution of 
bootstrap estimates (for details, see Efron and Tibshirani, 1993). About 100 bootstrap 
samples usually are sufficient to establish standard errors, but at least about 1000 are 
necessary for confidence intervals (Efron and Tibshirani, 1993). The bootstrap can even be 
used for hypothesis tests by generating bootstrap replicates of a test statistic under a particular 
null hypothesis and then comparing the resulting dislribution to the test statistic calculated 
for the observed data (Efron and Tibshirani, 1993; for a related topic, perniutation tests, see 
also Manly, 199 1). An advantage of the bootstrap is that it can be adapted to the particular 
design of a study. For instance, if there are discrete growth stages that can be identified 
unambiguously (see Fig. I), there may be no sampling error in the stage compositio~i of the 
data set (e.g., a design with equal numbers from each stage). The bootstrap procedure for 
ontogenetic allometry can be adapted by drawing "bootstrap subsamples" from these stages 
separately. These are then pooled into one bootstrap sample and principal components are 
calculated (Klingenberg and Zimmermann, 1992a). 

ANALYSES OF MULTIPLE GROUPS 

Many morphometric studies deal with several groups of specimens, e.g., different 
scxcs, species or ecomorphs. In all these cases, variation within and between groups has to 
be separated. Otherwise, levels of allometry may be confounded, or within-group variability 
may invalidate discrimination between groups. Separation of size-related variation within 
groups from between-group differences has been a traditional topic in morphometrics 
(Burnaby, 1966; Gower, 1976; Rcyment and Banfield, 1976; Pitnentel, 1979; Hutiipliries et 
a]., 1981; Thorpe, 1983; Reyment et al., 1984; Bookstein et al., 1985; Rohlf and Bookstein. 
1987; Marcus, 1990; Reyment, 199 1 ). 

Multivariate comparisons of allometric patterns often focus on the directions of the 
major axes of scatter ellipsoids in several groups. A straightforward measure for differences 
between two groups is the angle between their first principal components. For normalized 
principal components (i.e., squared coefficients sum up to unity), the angle a between 
components b and c in two groups is the arc cosine of the inner product of the two vectors, 

(b'c is sometimes called vector correlation; note that this is not the correlation between 
corrcsponding elements of the two vectors; see also Pimentel, 1979; Rryant, 1984). Angles 
can even be calculated from published tables of PC coefficients. Applications of angular 
comparisons include Boitard et al. (1982) and Gibson et al. (1984). Clieverud (1982) and 
Klingenberg and Zimmermann (1 992a) used Monte Carlo sinlulations of angles between 
random vectors to assess statistical significance. For the example in this paper, I used the 
bootstrap to test the more appropriate null hypothesis of equal PC vectors (0" angles). 

Another method for comparison among multiple groups of organisms is based on a 
multivariate ordination of the directions of allometric axes (Solignac et al., 1990; Klingen- 
berg and Froese, 199 1 ; Klingenberg and Spence, 1993). The first principal component of 
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each group is considered as a data point in the space spanned by the coefficients of the original 
variables. The vectors of PC1 coet'ficients are entered as observations in an ordination by a 
second PCA. Thc rcsults of this analysis can then be displayed as plots of the "meta-PC" 
scores. Bootstrap cstimatcs of allometric coefficients can be used to draw confidence ellipses 
(e.g., Owen and Chmielewski, 1985; Johnson and Wichern, 1988) as a visual indication of 
statistical accuracy (Klingenberg and Froese, 199 1 ; Klingenberg and Spence, 1993). 

Comparisons of allometry within several groups often, but not always, show that the 
coefficients of the PC 1 s differ only minimally. In these cases, it may be feasible to use one of 
the models of common covariance structure (Fig. 5; Airoldi and Flury, 1988; Flury, 1988). 
These models are based on the assumption that the groups share a common allometric pattern, 
i .e., that the major axes of their scatter ellipsoids are parallel. Thercfore, the diffcrences between 
the observed PCs of the samples are regarded as effects of sampling error. Principal component 
analysis, however, is a procedure for analyzing variation in a single sample, and therefore the 
method needs to be generalized for the context of multiple groups. Usually, the PC1 of the 
pooled within-group covariance matrix has been used to characterize this common allometric 
pattern, e.g., in multigroup PCA (Pimentel, 1979; Thorpe, 1983), Bumaby's procedure 
(Bumaby, 1966; Rohlf and Bookstein, 1987) and in the shearing procedure (Humphries et al., 
198 1; Bookstein et al., 1985; Rohlf and Bookstein, 1987). Airoldi and Flury (1 988) criticized 
thc usc of the pooled within-group covariance matrix, because it implicitly assumes that the 
covariancc matriccs of all groups are identical (Fig. 5 ,  right panel). They proposed an alternative 
procedure, common principal component analysis (CPCA), which only assumes that the PCs 
are common to all groups (see also Flury, 1988; Flury and Riedwyl, 1988). Whereas the 
dircctions of the principal axes are assumed to be the same, the amount of variation associated 
with each PC can vary between groups (Fig. 5 ,  center). Common principal component analysis 
is available in the NTSYS software package, FORTRAN routines are contained in the 
IMSLISTAT library (routines KPRIN and DKPRIN), a MATLAB program was written by L. 
F. Marcus and a SASAML version is available from the author. In applications of CPCA to 
multivariate allometry, the first common principal component (CPCI) is interpreted as an 
allometric pattern shared by all groups (Airoldi and Flury, 1988; Klingenberg and Zimmer- 
mann. 1992a, b; Klingenberg and Spence, 1993). 

Discrimination between groups is often difficult because of allometric variation 
within groups. Especially in organisms with indeterminate growth, the amount of within- 
group variation may far exceed between-group differences. For instance, fish can increase 
in size by several orders of magnitude during their life cycle. Other causes, such as nutrition, 
also contribute to variability within groups (Bernays, 1986; Patton and Brylski, 1987; Meyer, 
1990; Smith and Palmer, 1994). Depending on the particular organisms of interest, within- 
group variation is mostly ontogenetic or mostly static allometry, or a mixture of both. 

arbitrary CPC equal 

Figure 5. Thrcc lcvcls of similarity bctwcen covariance structures. Groups can have arbitrarily different 
covariance matrices: scatter ellipses then differ both in the directions and lengths of their principal axes. Under 
the common principal component model (CPC), groups share the same directions of principal axes but may 
differ in the amount of variation associated with each axis. Groups with equal covariance matrices have the 
samc dircctions and lengths of principal axes. More details, including additional levels of similarity, are given 
by A~roldi and Flury (1988) and Flury (1988). 
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Because most of this variation is often confined to a single dimension, along the allometric 
axis, it can be removed from an analysis by eliminating the variation in that direction. This 
approach uses allometry as a criterion of subtraction (Gould, 1975), as i t  has been done 
traditionally in bivariate studies. The central assumption of all methods for "size correction," 
is that the groups share the same allometric vector. If the groups have different allometric 
patterns, size correction is not possible because all corrections that are suitable for one group 
will not work in other groups. Several methods have been developed following this principle 
(Burnaby, 1966; Gower, 1976; Humphries et al., 1981; Thorpe, 1983; Bookstein et al., 1985; 
Rohlf and Rookstein, 1987). None of these methods, however, can be a substitute for careful 
examination of the specimens: hidden heterogeneity within the groups, e.g., undetected sex 
dimorphism or cryptic species, may invalidate the entire analysis. 

The procedure proposed by Burnaby (1966) eliminates the effects of growth from 
multivariate data by projecting data points onto a subspace that is orthogonal to the growth 
vector (see also Gower, 1976; Rohlf and Bookstein, 1987; Reyment, 1991). This growth-in- 
variant subspace has one dimension fewer than the original space. With three variables, for 
example, the growth-invariant space is a plane, and for two variables, it is a line (Fig. 6). The 
growth-adjusted data are coordinates of the projected points, expressed in the coordinate 
system of the original variables. The growth-invariant data for an n x p  data matrix X and a 
p x 1 growth vector b can be obtained as 

where I is an identity matrix of rank p. With a normalized vector, such as a principal 
component, the formula simplifies to 

X(I - bb'). 

Usually, the PC 1 of the pooled within-groups covariance matrix has been used as thc 
growth vector in Rurnaby's procedure (e.g., Reyment and Banfield, 1976; Riska, 198 1 ; Rohlf 
and Bookstein, 1987). Because CPCA is based on less-stringent assumptions (see above), 

Figure 6. Burnaby's (1966) procedure in two dimensions. The model of common principal components is 
appropriate, because the principal axes of the scatter ellipses it1 the two groups are parallel. Therefore, the 
Sroups share a common axis of allometric growth, the CPCI. All the variation is projected onto an axis 
perpendicular to the CPC I by setting the CPCI scores to zero. Subsequent analyses focus on between-group 
differences in this "growth-invariant" axis. The PC1 of the combined satnples ("Total PCI") confounds 
variation within and between groups. 
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the CPCI seems preferable as an estimate of a common allometric pattern. This version of 
Burnaby's technique is equivalent to a procedure involving three consecutive steps: (1) a 
rigid rotation to the common principal components, (2) setting the CPCI scores of each data 
point to zero, and (3) rigid rotation back to the original coordinate system. 

For analyses of growth-adjusted data, it may be more convenient to omit step (3). 
First, common principal components are computed as an estimate of within-group variation, 
and the CPC scores, except for the CPC 1, are used as variables in subsequent analyses. The 
results of these analyses, e.g., discriminant analysis or MANOVA, are identical to the results 
based on data adjusted by Burnaby's original procedure, but within-group covariance 
matrices are of full rank. This technique is almost identical to the one proposed by Thorpe 
(1 983; the PC 1 of the pooled within-groups covariance matrix as an estimate of the allon~etric 
axis), which has been used in numerous studies (e.g., Wiig, 1985; Thorpe and Baez, 1987; 
Corti et al., 1988; Lessa and Patton, 1989). 

Interpreting the values resulting from Burnaby's procedure is somewhat difficult. 
With some caution, they can be seen as measurements adjusted to "unit size." This is possible 
for most morphometric data sets because the CPC 1 has high positive correlations with all 
variables, and therefore can be interpreted as an overall size variable. Setting the CPCl score 
for log-transformed measurements to zero corresponds to setting the untransformed value 
of overall size to one. The adjusted variables therefore allow one to compare orgariisrns of 
different sizes by rescaling all measurements allometrically to unit size. For example, in Fig. 
6 the group to the left has higher X2 and lower XI values at corresponding sizes than does 
the group to the right. The difference between this approach and comparisons of ratios or 
geometric shape is that Burnaby's procedure takes into account the shape changes caused 
by allometric growth. 

Another way to understand Burnaby's procedure is by analogy to the most familiar 
method of size correction in bivariate allometry, regression residuals. Regression residuals 
are an appropriate way of correcting for size if one is interested in the relationship of a 
dependent variable y (e.g., an ecological or physiological parameter) to a size variable x 
known a priori and measured independently (e.g. body weight). Then, the residuals are the 
deviations of actual measurements from the value expected for an "average" specimen of 
that particular size. Thcse dcviations are computed in the direction of they axis by subtracting 
they  value estimated by regression from the observed value. Hence, the interpretation of 
allometry as a "criterion of subtraction" (Gould, 1975) can be taken literally. In multivariate 
allometry, however, there is no a priori sizc variable that can be measured independently 
from the other variables. All measurcmcnts arc affected simultaneously by overall size, which 
only can be estimated from them. As I explained above, the PC1 is a good choice for such 
an cstimate. The "residuals" are subsequent PCs, which are perpendicular to the PC 1 (step 
[2] above). In bivariate regression, comparison of intercepts of several groups makes sense 
only when the slopes in all groups are equal. Analogously, Burnaby's procedure only works 
if all the groups share a common allometric pattern, as it is estimated by the CPCI. (For 
groups that differ in their growth vectors, Burnaby [1966] suggested removing all growth 
vectors from the data; after this, however, there may not be much meaningful variation left 
to study [e.g., Humphries el al., 19811.) 

Because it includes only rigid rotations, Burnaby's procedure conserves the spatial 
relationships among data points in all directions except that of the growth vector. Therefore, 
data adjusted by this technique can be used to quantify variation perpendicular to the growth 
trajectories. For instance, lateral transpositions of growth trajectories (also called vertical 
transpositions) can be distinguished from group differences produced by shifts along the 
growth axis (ontogenetic scaling, Gould, 1975; Shea 1985, 1992). These two types of group 
differences, as well as within-group variation, arc confounded in PCA of combined samples 
(Fig. 6; for discussion, see Voss et al., 1990; Voss and Marcus, 1992; Klingenberg and Spence, 
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1993). Burnaby-adjusted data also can be used to examine within-group deviations from 
simple ontogenetic allometry, such as curvatures of the growth trajectories. Klingenberg and 
Spence (1 993) used a MANOVA of Burnaby-adjusted data to separate lateral transposition 
from nonallometric growth in a data set containing samples of six discrete ontogenetjc stages 
from each of six waterstrider species (i.e., a data structure corresponding to Fig. 1). The PC 1 
scores of the between-species matrix can be used to display lateral transposition, and likewise 
the between-stage matrix for nonallometric growth. 

Procedures for size correction in several groups all assume that the groups share the 
same allometric pattern. But what if that is not true? In this case, the formal procedures fail, 
and one has to find a visual and at best "semistatistical" way to assess group differences. A 
very useful technique of this kind is the "tomographic representation" introduced by Roitard 
et al. (1982). First, they calculated the PCs for the covariance matrix of the pooled data. 
Then, they plotted the second versus third PC scores separately for data points grouped by 
the data points PC 1 scores. Finally, they combined these layers into a plot showing the scatter 
ellipsoids "suspended" by their within-group PC1 axes in a box representing the space of 
the first three PCs of the pooled data. 

EXAMPLE: GEOGRAPHIC VARIATION 

Some of the techniques described above are applied in a simple example, a mor- 
phometric data set taken from a larger study on geographic variation in the waterstrider 
Gc?rri.~ ~o.sta(? (Klingenberg, 1992). Only adult specimens were measured, and because these 
bugs do not grow after they reach the adult stage, I made no attempt to correct for size in the 
original study. Here, using allometric techniques, I reanalyze a part of the data. 

Three samples, each representing a different subspecies, are included here: the 
nominate subspecies G. c. costae is represented by a sample from the Swiss Alps (n = 32), 
G. c. ,fieheri is represented by a sample from northern Greece (n = 33), and G. c. poi.c.c.oni 
by a sample from the eastern Pyrenees in France (n = 28). In this example, 1 consider only 
adult males. Allometric variation within the three samples is therefore purely static allometry. 

Four measurements were chosen for the example: ( I )  total thorax length, (2) the 
length of the first antenna1 segment, (3) the middle femur length and (4) the hind femur 
length. The raw data are presented in the Appendix. Data were transformed to natural 
logarithms. For the convenience of presentation, variances and covariances are multiplied 
by 1 O4 (this also applies to eigenvalues). The covariance matrices are 

I 8'39 14'34 9 0 4  1161 
8: 7.5 9:b4 2: 05 3: 63 for the satnple from the Alps, 

11.09 11.61 13.63 17.83 

1 : : : : 1 lor the sample from Greece, and 

4.93 5.97 3.90 5.16 

: : fur the a a n ~ p ~ e  from the Pyrmees. 

5.16 8.35 7.56 10.70 

As in many morphometric data sets, all covariances are positive and most of them 
are relatively high. There are, llowever, some differences bctween groups and among 
variables. The sample from the Alps is more variable than the other two samples. Whereas 
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the two femur lengths are highly correlated in all groups, correlations involving thorax length 
and the first antennal segment tend to be lower and more variable (e.g., the correlation 
between these two mcasurcments is only 0.28 in the Greek sample). 

Principal components were coniputed for each sample, and parametric standard errors 
for the estimates of PC coefficients and eigenvalues were calculated using the formulas given 
by Flury (1 988). Moreover, standard errors were also determined with a bootstrap procedure. 
For each group, 1000 bootstrap samples were randomly drawn (with replacement), and 
principal components were computed for cach. (This number of replications is more than 
actually needed for standard errors; Efron and Tibshirani, 1993.) The standard deviations of 
these 1000 estimates of the PC coefficients or eigenvalues are their bootstrap standard errors. 

The amount of variance (f parametric and bootstrapped standard errors) for which 
PC1 accounts is 46.1 (+ 11.7, 12.5) or 81% of total variancc in thc sample from the Alps; 
for 24.1 (+ 6.0, 4.5), or 67OA in the Greek sample; and for 3 1.4 (+ 8.5, 7.2). or 76% in the 
sample from the Pyrenees. Standard errors determined by the two approaches are similar in 
magnitude, although the bootstrap standard error for the Greek sample differs from the 
parametric estimate by about 25%. The percentages of total variance taken up by the PC1 
are quite typical for static allomctry (c.g. Cuzin-Roudy, 1975; Klingenberg and Zimmer- 
mann, 1992a). The estimated coefficients of the PC1 and their parametric and bootstrapped 
standard errors are 

[i$il, I;':"'" an""13ii:j for 'he sample "om the A", 

0.034 

ro. 3 151 ro. 0501 ro.0371 

for the sample from the Pyrenees. 

The estimates of PC coefficients are fairly stable, as indicated by the relatively small 
standard errors. Bootstrap standard errors agree well with parametric estimates. The coeffi- 
cient values clearly do not conform to the pattern for overall isometry, where all coefficients 
would be equal to y-"', i.e., the vector r0.5, 0.5, 0.5, 0.51'. This is confirmed by Anderson's 
tcst (Andcrson, 1963; Pimentel, 1979:70; Flury, 1988:34), which was significant for all three 
groups (Alps: x2 = 11.52, P < 0.01; Greece: X2 = 20.37, p < 0.001; Pyrenees = 23.82, y < 
0.0001; df = 3 in each case). 

Coefficients vary considerably between samples. In the sample from the Alps, the 
middle femur (third measurement) is almost isometric relative to thorax length (first 
measurement), as the ratio of their coefficients is 0.477 10.441 = 1.08. In the Greek sample, 
however, the corresponding ratio is 0.527 1 0.269 = 1.96, which indicates strong positive 
allometry of the middle femur rclativc to thc thorax. Whereas the lengths of the first anlennal 
segment and of the middle femur (second and third measurements) are almost isometric in 
the sample from the Alps, the middle femur shows positive allometry relative to the first 
antennal segment in the Greek sample, and negative allometry in the Pyrcnccs. As an ovcrall 
measure of these differences, I computed the angles between PC 1 axcs of diffcrcnt groups; 
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they are 12.22" between Alps and Greece, 16.29" between Alps and Pyrenees, and 2 1.19" 
between Greece and the Pyrenees. 

If we expect a common allometric pattern, these angles seem quite large. But are the 
differences from zero statistically significant? Because there is no parametric test for the 
angles between PCs, I used the bootstrap approach to test the null hypothesis that the common 
principal component model holds. The bootstrap test procedure is straightforward: use the 
data to generate a modified data set that conforms to the null hypothesis, then repeatedly 
draw bootstrap samples and compute the test statistic, and finally compare the empirical 
distribution of the test statistic to the value calculated for the original data (Efron and 
Tibshirani, 1993). To produce a data set conforming to the CPC model, I rotated the data in 
each sample so that the within-group PC axes are aligned exactly with the CPC axes. This 
is easy to do because the matrix of PC coefficients B can be used to rotate the data points 
from the original coordinate system to the PC coordinates Y = XB, whereas the transpose 
of B performs the reverse rotation YB'= X. A data set conforming to the CPC model can be 
obtained by using cach group's own PC coefficients for the first rotation, but the coefficient 
matrix from a CPCA for the reverse rotation. Thus, the modified data in the i-th group are 
X', = X,B,B 'CpC, where B, is the matrix of within-group PC coefficients, and BUc is the 
matrix of CPC coefficients (using the PC scores for each group, Y, = X,B, is equivalent). For 
this test, 5000 bootstrap replications were performed. For each replication, bootstrap samples 
were drawn from the modified data of all three groups, and the angles between the PC1 axes 
of the thrce groups were computed. The 95% quantiles of the angles are 18.56" between the 
samples from Alps and from Greece, 16.32" between the Alps and the Pyrenees, and 20.59" 
between the Pyrenean and the Greek samples. Therefore, the two angles that involve the 
sample from the Pyrenees seem to indicate a significant difference from the Greek sample 
and a borderline significance for the difference from the Alps. Because there are three 
comparisons, however, the chance of rejecting a true null hypothesis by chance at an ct of 
0.05 is 1 - (1 - a)3 = 1 - 0.86 = 0.14. The Bonferroni technique can be used to adjust the 
significance level form individual comparisons to a new significance thresholdat(1 - aim)= 
98.33%. None of the comparisons was significant at this adjusted level (98.33% quantiles 
are 22.23, 20.63, and 25.48, respectively). Therefore, the data seem to be consistent with a 
model of an allornetric pattern that all three groups have in common. 

This preliminary conclusion justifies using common principal components to esti- 
mate an allometric pattern for all three groups simultaneously. Again, standard errors were 
estimated both by using formulas based on large-sample theory (Flury, 1988) and by 
bootstrapping with 1000 bootstrap iterations. The estimates of the CPCl coefficients with 
their parametric and bootstrapped standard errors are 

Although in a CPC model there is only one set of eigenvectors, which is shared by 
the groups, each group has its own eigenvalues. The variance taken up by the CPCl ( 2  
parametric and bootstrap standard errors) in each sample is 45.8 (+ 11.4, 12.2) for the Alps; 
23.6 (+ 5.8, 4.7) for Greece, and 30.0 (f 8.0, 7.4) for the Pyrenees. This corresponds to 
80.4%, 65.7% and 72.8% of the total variance in the respective samples. These values are 
only a little lower than corresponding values from the separate one-group PCAs of each 
sample; one common allometric pattern can account for almost as much of the variation as 
the PC1 of each group separately. Further support for a common model comes from the 
log-likelihood ratio test of the CPC model (Flury, 1988; Airoldi and Flury, 1988), which does 
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not show a significant difference from the unrestricted model in which every group has its 
own PCs ( x 2  = 10.55, df = 12, p = 0.57). For the same X* statistic, the bootstrap test with 
5000 iterations yielded a 95% quantile of 20.90, which agrees nicely with thc corresponding 
value of 2 1.03 in statistical tables (the same bootstrap replicates as for the angles between 
one-group PCs, above). The angles between the CPC l axis and the one-group PC1 axes 
indicate that the CPC estimate is a "compromise" between the one-group PCs (5.2" for Alps; 
9.4" for Greece; 13.5" for Pyrenees). In the bootstrap test, none of these angles exceeded the 
98.33% quantiles (Bonferroni adjustment for a = 0.05; quantiles are 9.85", 18.25", and 
17.75", respectively). Therefore, it is reasonable to assume that the three groups share the 
same allometric pattern and that the differences between the PC1 estimates of individual 
groups are due to sampling error. 

To examine whether the differences between groups are simply extensions of within- 
group variation, I used Burnaby's approach. "Size-invariant" variation between groups was 
analyzed by a MANOVA of CPC scores, omitting the CPCI. The first eigenvector of the 
resulting between-groups matrix indicates the axis that contains the most variation among 
groups, subject to being perpendicular to the within-group allometric axis. Because there are 
three groups, the matrix of between-groups sums of squares (mean squares would yield 
equivalent results) has only two non-zero eigenvalues. The first eigenvector of this matrix 
accounted for 82% of the total between-group variation, and it therefore summarizes most 
of the differences between samples after adjusting for size. 

Fig. 7 is a plot of this axis of group differences versus the CPC1 scores. The Greek 
specimens differ from the Alpine ones mainly by their higher CPC1 scores, which indicate 
greater overall size. Therefore, the bugs of the Greek sample can be seen as "scaled-up" 
versions of their counterparts from the Alps, corresponding to intraspecific scaling along the 
axis of static allometry (Gould, 1975; although these data deal with subspecies, and not with 
different species, I do not think it would be helpful to coin a new term). The differences 
between the samples from the Alps and Pyrenees are largely unrelated to within-group 
variation. These conclusions are also supported in a more quantitative way by the Mahalano- 
bis distances between the three groups. The Mahalanobis D2value, computed from the second 
to fourth CPC scores, is clearly smaller between the samples from the Alps and from Greece 

A Greece 
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Common Principal Component 1 

Figure 7. Geographic variation in the waterstrider Gerris costae. The first common principal component of 
the three samples (abscissa) can be interpreted as a measure of overall size. It indicates that Greek specimens 
are considerably larger than those from the Alps or the Pyrenccs. Thc vcrt~cal axis is thc PC1 of the 
between-group matr~x from a MANOVA of "size-free" data (the scores of CPC2-CPC4) and sumrnarizcs 
differences between groups independent of within-group allometry. It shows that the samples from thc Alps 
and Pyrenees are separated fairly well, although they are of similar overall size. 
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(D2 = 2.38) than between either of these and the sample from the Pyrenees (Alps versus 
Pyrenees D2 = 6.55; Greece versus Pyrenees D2 = 4.92). These values, however, also show 
that scaling does not account for all the difference between the specimens from the Alps and 
from Greece. 

The bootstrap technique has several advantages for assessing statistical accuracy and 
even for hypothesis testing in morphometric analyses. First, it does not require that the data 
conform to any particular probability distribution as other techniques do. Nevertheless, 
assumptions about distributions can be incorporated in the simulations (parametric bootstrap; 
Efron and Tibshirani, 1993). For the present example, the parametric bootstrap for a 
multivariate normal CPC model gave results similar to the nonparametric results presented 
above. Second, the bootstrap can be used for any test statistic, even if its statistical properties 
are unknown. In the example, I extensively used the angles between PC axes, because angles 
are particularly intuitive as a measure of overall similarity for allometric vectors. Moreover, 
the bootstrap can be adapted easily to a variety of experimental designs or hypothesis tests. 
For the bootstrap test of the CPC model, rotation of the original data was sufficient to generate 
a data set conforming to the null model. With tools such as the singular value decomposition 
(e.g., Marcus, 1993), a variety of other null models could be simulated with real data. 

These advantages have a cost, however, as the bootstrap technique is based on massive 
amounts of numerical calculation. As computers become faster and cheaper, this may not be 
a scrious problcm cxccpt for cxtrcmcly largc or complcx data sets. For this example, all 
bootstrap analyses were done by a personal computer with a 486150MHz processor, and 
using SAS/IML software (version 6.08). Although the number of bootstrap replications was 
substantial, the computatron timc was moderatc. For standard crrors in onc-group PCA, with 
3000 analyses (1000 bootstrap replications for three groups), the entire bootstrap procedure 
took less than 1.5 minutes. The I000 bootstrap replicates for CPCA took about 45 minutes, 
much longer than for ordinary PCA, because the computational procedure for CPCA is more 
complex. The most effort was required for the bootstrap test: thc 5000 itcrations, each with 
three one-group PCAs and CPCA, took a little more than 3 hours. The high number of 
bootstrap replications for the test was necessary because one is interested in the tails of the 
test statistic's empirical distribution (Efron and Tibshirani, 1993). The computational effort 
used for this example shows that the bootstrap is a reasonable option, even with a personal 
computer and for relatively complex problems. 

ALTERNATIVE APPROACHES IN ALLOMETRY 

In the preceding sections, I presented allometry in a pragmatic way, extending the 
familiar logic of two-dimensional scatter plots to a multivariate context. This approach 
focuses on the patterns of variation by determining amount, dimensionality and direction of 
morphometric variation in the space of log-transformed variables. 

Some readers may have noticed that I only used the words "size" and "shape" in a 
rathcr informal way, although they are the central concepts for other approaches in mor- 
phometrics (Bookstein et al., 1985; Bookstein, 1989, 199 1, 1993; Rohlf, 1990; Rohlf and 
Marcus, 1993). In studies based on the approach described above, "size" and "shape" may 
appear in interpretations of the results, but they are not parts of the analyses themselves. The 
analyses are exploratory or they test simple hypotheses about the structure of variation, such 
as whether or not the scatter ellipsoids of several groups have major axes that are parallel. 
Principal components, used in many allometric studies, can "account for" or "take up" 
variation, but do not "cause" or "explain" it. Interpretation and explanation are extrinsic to 
the analyses, and they consist of argurnents about biological processes producing the 
observed patterns of variation, e.g., growth dynamics or evolutionaly constraints. 
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Figurc 8. Path models in allo~netry. (a) Path diagram for simple allometry in a singlc group. All covariation 
among variables is caused hy a general size factor S. Residual variation ( 6 )  is uncorrelated among variables. 
(b) Allometric variation in two groups. Both groups share the same general size factor and. therefore, also the 
same within-group covariance structure. Group differences are detcrmirled by the group factor G in two 
different ways: directly as group shape differences (arrows from G to the variables). or as group size differcnce 
via the general size factor (arrow from G to 3. 

A very different framework underlies the factor analytic approach, which starts with 
an explicit model of the origin of variation in measurement variables (see Bookstein et al., 
1985; Bookstein, 1989, 1991). Factors are formally included in the analysis as causes of 
covariation among several morphometric variables; explanation is therefore an intrinsic part 
of the analysis. A path model is constructed according to biological knowledge and specifies 
a hypothesis of relationships between factors and observed variables (Wright, 1968; Book- 
stein et al., 1985; Loehlin, 1987; Zelditch, 1987; Marcus, 1990; Bookstein, 1991). In a path 
model of allometry, general size is a factor, or latent variable, simultaneously affccting all 
morphomctric measurements and causing the covariance among them (Fig. 8a). As a latent 
variable, size cannot be measured directly, but it can be estimated. This is usually done using 
the within-group PC 1 (Bookstein et al., 1985; Rohlf and Bookstein, 1987). 

Hopkins (1 966) proposed a similar factor model of allometry. Thc observed covari- 
ance matrix S of log-transformed characters is composed of two parts. S = T + D. The matrix 
T, which reflects systematic covariance, is of rank one. Therefore, it has only one principal 
component, which corresponds to the allometric axis, or to the general size factor in Fig. 8a. 
The PC coefticients of T (which cannot be observed) arc proportional to the factor loadings 
of general size. The matrix D stands for the residual variation, which is assumed to be 
uncorrelated among variables; therefore, D is a diagonal matrix. The structure of D is crucial 
for the choice of methods to estimate the parameters of the model. The PC i of S is only 
appropriate to estimate the size factor if the diagonal elements of D are equal (Hopkins, 
1966); otherwise, the size factor should be estimated from the off-diagonal elements (see 
Bookstein, 1991). If all variables are highly correlated to each other and D therefore makes 
only a minor contribution to the total covariance matrix S, as in many morphometric data 
sets, the PC1 is a reasonable estimator. 

Ifthere is more than one group of specimens, one or more additional factors for group 
differences (G in Fig. 8b) explain differences between two or more groups (Bookstein et al., 
1985; Rohlf and Bookstein, 1987; Bookstein, 199 1). Group factors can affect the measure- 
ments through general size or in a size-invariant manner. Group size differences (arrow from 
G to S i n  Fig. 8b) cause shifts along the growth axis and correspond to ontogenetic scaling, 
whereas size-invariant differences (arrows from G to the variables in Fig. 8b) correspond to 
lateral shifts of trajectories (Shea, 1985, 1992; Klingenberg and Spence, 1993). This is the 
path model for the shearing procedure, which was originally introduced by Humphries et al. 
(1981) and later reformulated by Bookstein et al. (1985), Rohlf and Bookstein (1987) and 
Bookstein ( 1  991). The main purpose of this procedure is to obtain factor loadings interpret- 
able as path coefficients (Rohlf and Bookstein, 1987) rather than to obtain an ordination. 
The geometric basis for the shear is more complex than for Burnaby's proccdure because it 
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is not just a rigid rotation (see Humphries et al., 1981; Bookstein et al., 1985; Rohlf and 
Bookstein, 1987). As a consequence, it does not conserve the spatial relationships among 
data points and is dificult to use, e.g., to quantify lateral transposition of growth trajectories. 
Applications of the shear include Bookstein et al. (1985), Strauss (1985), Voss et al. ( 1  990), 
and Voss and Marcus (1 992). 

Several studies have used factor analysis to investigate more complex models of 
correlation or covariance structure among morphometric variables (Bookstein et al., 1985; 
Zelditch, 1987, 1988; Zelditch and Carmichael, 1989; Marcus, 1990). In addition to general 
size, these models include factors explaining joint variation in groups of variables that are 
developmentally or functionally related. An alternative procedure (Cowley and Atchley, 
1990; Paulsen and Nijhout, 1993) uses hypotheses about relations among characters to 
predict the pattern of a correlation matrix, and then compares these to observed correlation 
matrices by means of randomization tests (Cheverud et al., 1989; Manly, 1991). These 
models, however, are beyond the scope of allometry. 

Yct another, more general method of characterizing size was introduced by Mosimann 
(1970), when he defined standard size variables. Any positive, real-valued function G(x) of 
a vector of measurements x is a standard size variable, ifmultiplication of each measurement 
by a constant a results in an a-fold value of the size function, i.e., G(ax) = aG(x). This 
condition ensures that the variable scales as a linear dimension. A standard size variable 
transformed to logarithms is called a log-size variable. A class of log-size variables important 
for multivariate allometry is defined as linear combinations of log-transformed measure- 
ments, i.e., log G(x) = Cbi (log xi),  with Cb, = 1 (Mosimann and James, 1979; Darroch and 
Mosimann, 1985). Rescaling the PC coefficients for ontogenetic allometry so that they sum 
up to unity yields a log-size variable that indicates each specimen's position along the growth 
trajectory (Klingenberg and Zimmermann, 1992b; Klingenberg and Spence, 1993). Similar 
measures of size, but without resealing, were used by Creighton and Strauss (1 986), Strauss 
(1990b) and Voss and Marcus (1 992), among others. 

If size alone is of interest, the choice of a size measure often does not matter very 
much. In many morphometric data sets, the variables and the size measures derived from 
them are highly correlated among one another. Hence, different size measures may produce 
different scaling factors, due to allometry, but they will yicld basically the same ordering 
from small to large specimens and similar size differences between them. In studies of 
allometry based on either PCA or factor analysis, "shape" often does not appear explicitly 
at all, or if it does, it is used in a sense very different from everyday language (e.g., Bookstein, 
1989). In those cases, "shape" is usually (though rarely explicitly) defined as "cvcrything 
that is not size." It is through this notion of "shape" that the choice of a size measure mattcrs 
for morphometric studies: because "size" often takes up a large fraction of the total variation 
in a data set, relatively small changes in the size measure produce proportionally large 
changes in what remains after "size" is removed. 

In multivariate allometry based on PCA, the second and subsequent PCs often are 
interpreted as "shape scores."Nevertheless, they do not reflect a geometric concept of shape. 
If two specimens, differing in size, have the same "shape scores," they can be interpreted as 
geometrically similar only if the corresponding size vector is isometric; otherwise, there are 
allometric changes in shape (see also Bookstein, 1989). To separate size and geometric shape, 
Somers (1 986, 1989) proposed a size-constrained version of PCA in which variation in the 
direction of an isometric vector is removed first. Unfortunately, Somers used the correlation 
instead of the covariance matrix, thereby removing not only isometric size from the data but 
also all allometric variation (see above). As an alternative procedure to achieve Somers's 
original objective, Burnaby's procedure can be used to eliminate a vector representing 
isometric variation, which is mathemalically equivalent to performing a PCA on the covari- 
ance matrix of doubly centered data (Somers, 1989) or on the "principal components of 
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shape" proposed by Darroch and Mosimann (1985; see also Jungers et al., 1988). Notice, 
however, that removing isometric size adjusts for only variability in overall size itself, but 
not for any size- or age-related shape variation. For example, although Barbie dolls are 
smaller than are many other dolls clearly representing infants, it is easily recognizable that 
Barbie dolls are modeled after human adults. 

Mosimann (1970) presented a definition of a shape space based on geometric 
similarity. Each vector of measurements x, divided by a standard size variable G(x), 
constitutes a measure of shape. Darroch and Mosimann (1985) developed principal compo- 
nents and canonical variates for the space of these shape measures and applied them to two 
examples. Further applications are found in Mosimann and James (1979) and Jungers et al. 
(1988). In this framework, allomctry cxists if variations in size and shape are associated; 
isometry means that variation in size and shape are statistically independent. Mosimann's 
theory of size and shape links some aspects of multivariate allometry to the landmark-based 
methods of geometric morphometrics (Bookstein, 1989, 199 1, 1993). The underlying 
concept of allometry, howcvcr, differs fundamentally from the other frameworks presented 
here, as it abandons the straight-line relationship among log-transformed variables, which 
is the basis of allometry as devised by Huxley (1 932). In this point, Mosimann's concept is 
closer to the much broader notion of allometry adopted by Gould (1966), who characterized 
it as "the study of size and its consequences." 

Whereas Mosimann's (1 970) approach, although bascd on considcrations of geomct- 
ric similarity, still uses vectors of length measurements, geometric morphometrics goes one 
step further and analyzes shape as geometric configurations of morphological landmarks 
(e.g., Rohlf, 1990; Bookstein, 199 1, 1993; Rohlf and Marcus, 1993; other chaptcrs in this 
volume). The strong emphasis on shape in geometric morphometrics is reflected in two recent 
definitions of morphometrics, characterizing it as "the quantitative description, analysis and 
interpretation of shape and shape variation in biology" (Rohlf 1990) and as "the geometri- 
cally reified description of effects on geometric shape" (Bookstein, 1993) without even 
mentioning size. Clearly, geometric morphometrics presents a dramatically different frame- 
work for allometry. Variation in size is removed from the data (by the two-point registration 
for Bookstein's shape coordinates or by standardizing for centroid size; Bookstein, 199 1 ; 
Rohlf, 1993), and shapc changes alone are included in the analysis. Allometry can be assessed 
by combining the results from shape analysis with additional information, either directly by 
nonlinear regression of "shape scores" (relative warps, shape coordinates, or Procrustes 
residuals) on a measure of size (Bookstein, 199 1 ; Walker, 1993), or by subdividing specimens 
into s i ~ e  classes (MacLeod and Kitchell, 1990) or age groups (Reilly, 1990; Bookstein, 199 I; 
Zelditch et al., 1992) and comparing their mean shapes. Allometric variation over an 
extended size range, as it occurs in many growth studies, often leads to highly nonlinear 
trajectories (Bookstein, 199 1 ; Zelditch et al., 1992; Walker, 1993). 

The choice of methods for a particular study depends on what questions a study is 
supposed to answer. The results obtained from analyses using the geometric methods can be 
interpreted directly in terms of shape. Here, "shape" is used in its intuitive sense, meaning 
a geometric configuration. The disadvantage of these methods, however, is the complexity 
of allometric relations. For example, a procedure analogous to Bumaby's technique to adjust 
for shape differences due to allometric growth would have to use nonlinear regression of 
shape measures on overall size. On the other hand, the results of analyses that use distance 
data are more difficult to describe in everyday language; graphical displays, like Fig. 7 are 
abstractions rather than picturcs of rcal organisms. If the notion of "shape" is used at all, it 
denotes the relative sizes of parts of thc organism. The advantage of methods using 
log-transformed distances is that these data often fit linear models due to their relationship 
to growth dynamics, which was used by Huxley (1932) to justify his formula for simple 
allometry. 
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From an extreme point of view, the configuration of morphological landmarks of an 
organism could be considered as merely an epiphenomenon of the growth processes affecting 
the tissues between the landmarks. Ideally, therefore, morphometric methods should be based 
on models of biological processes rather than geometrical or statistical considerations (e.g., 
Sattler, 1992). Although this view is correct in principle, our knowledge of the mechanisms 
involved in developmental processes is incomplete even for simple and well-studied experi- 
mental systcms (c.g., Atchley and Hall, 199 1). For less well-known organisms and for more 
complex problems, such as evolutionary comparisons, landmark configurations or length 
measurements must be used as the basis for our understanding of organismic form. 
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APPENDIX 

Table 1. Morphometric data (raw values, in millimeters) for the example in the text. Four 
measurements were made on male Gerri.s costae from three dit'ferent locations in 

Europc (Klingcnbcrg, 1992). The measurements are the lengths of the thorax (Tho), 
the first antenna1 segment (Ant), and the femora of the middle and hind legs (MF 

and IIF), corresponding to numbcrs 35,43,49. and 53 of Klingenberg (1992) 

Pyrenees 
Tho Ant MF HF 
5.15 1.45 6.05 6.36 
5.05 1.46 5.86 6.11 
4.97 1.52 6.12 6 3 5  
5.03 1.43 6.01 6.21 
5.34 1.53 6.13 6.40 
4 9 9  1.41 5.81 5.89 
531 1.59 6.39 6.67 ! 
5 2 9  1.54 6.23 6.62 ' 

5.33 1.59 6.35 6.60 
5.18 1.46 6 25 6.54 
5 . 2  1.52 6.08 6.49 
5.23 1.47 6.02 6.46 
5.16 1.51 6.06 6.20 
5.07 1.42 5.89 6.27 
5.13 1.54 5.91 6.25 
5.14 1.55 6.06 6.35 
5.26 1.47 6 1 8  6.49 
4.96 1.40 5.81 6.15 
5.10 1.42 5.97 6.07 
5.17 1.54 6.1 1 6.35 
5.06 1.48 6 0 2  6.35 
5.08 1.53 6.22 6.38 
5.08 1.39 5.92 6.15 
5.25 1.43 6.08 6.39 
5.06 1.46 6.18 6.57 
5.21 1.61 6.05 6.34 
5.05 1.40 6.19 6.33 
4.96 1.40 5.75 5 8 2  

Alps 
Tho Ant MF HF 
5.11 1.51 6.07 6.13 
5.10 1.53 6.15 6.25 
5.08 1.60 6.28 6.41 
5.16 1.55 6.18 6.3 
4.78 1.54 5.79 5.86 
4.64 1.41 5.55 5.46 
5 2 7  1.60 6.20 6.29 
4.71 1.43 5.74 5.67 
5.42 1.55 6.28 6.35 
4.91 148  5.70 5.71 
5.03 1.48 6.07 5.82 
5.11 1.48 6.29 6.38 
5.01 1.56 6.10 6.23 
5.25 1.56 6.06 6.13 
5.15 1.57 6.03 6.21 
5.18 1.57 6.20 6.3 
4.96 1.53 5.92 5.93 
5.02 1.48 5.87 6.17 
4.82 1.51 6.02 6.08 
5.22 1.62 6.13 6.21 
5.16 1.63 5.98 6.07 
5.34 1.58 6.19 6.41 
5.18 1.55 6.04 6.14 
4.94 1.59 6.36 6.46 
5.05 1.48 5.83 5.92 
4.87 1.48 5.79 5.93 
5.10 1.55 6.28 6.44 
5.16 1.69 6.42 6.50 
5.13 1.53 6.15 6.20 
4.82 1.50 5 85 5.79 
4.97 1.58 5.90 6.06 
5.02 1.56 6.17 6.25 

Greece 
Tho Ant MF HF 
5.74 1.72 6.65 7.05 
5.40 1.59 6.39 6.76 
5.34 1.67 6.47 6.79 
5.51 1.72 6.65 7.05 
5.44 1.66 6.46 6.76 
5.49 1.69 6.27 6.48 
5.64 1.75 6.75 6.95 
5.45 1.71 6.70 712  
5.36 1.71 6.84 7.17 
5.44 1.72 6.31 6.71 
5.51 1.69 6.34 6.55 
5.71 1.69 6.44 6.88 
5.42 1.65 6.44 6.59 
5.35 1.67 6.36 6.61 
5.45 1.57 6.18 6.62 
5.28 1.56 6.20 6.49 
5.43 1.66 6.28 6.58 
5.44 1.63 6.28 6.52 
5.48 1.75 6.44 6.61 
5.51 1.71 6.17 6.52 
5.32 1.67 6.52 7.02 
5.58 1.62 6.51 6.80 
5.46 1.61 6 4 5  6.66 
5.44 1.66 6.59 6.92 
5.63 1.61 6.46 6.80 

15.61 1.70 6.75 7.16 
5 4 2  1.74 6.30 6.65 
5.67 1.71 6.75 7.27 
5.15 1.66 6.24 6.24 
5.36 1.75 6.52 6.86 
5.57 1.65 6.29 6.48 
5.62 1.74 6.57 7.06 
5.53 1.71 6.45 6.86 




