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Abstract—In recent years, there has been controversy whether multidimensional data such as geometric morphometric
data or information on gene expression can be used for estimating phylogenies. This study uses simulations of evolution
in multidimensional phenotype spaces to address this question and to identify specific factors that are important for
answering it. Most of the simulations use phylogenies with four taxa, so that there are just three possible unrooted trees
and the effect of different combinations of branch lengths can be studied systematically. In a comparison of methods,
squared-change parsimony performed similarly well as maximum likelihood, and both methods outperformed Wagner
and Euclidean parsimony, neighbor-joining and UPGMA. Under an evolutionary model of isotropic Brownian motion,
phylogeny can be estimated reliably if dimensionality is high, even with relatively unfavorable combinations of branch
lengths. By contrast, if there is phenotypic integration such that most variation is concentrated in one or a few dimensions,
the reliability of phylogenetic estimates is severely reduced. Evolutionary models with stabilizing selection also produce
highly unreliable estimates, which are little better than picking a phylogenetic tree at random. To examine how these results
apply to phylogenies with more than four taxa, we conducted further simulations with up to eight taxa, which indicated that
the effects of dimensionality and phenotypic integration extend to more than four taxa, and that convergence among internal
nodes may produce additional complications specifically for greater numbers of taxa. Overall, the simulations suggest that
multidimensional data, under evolutionary models that are plausible for biological data, do not produce reliable estimates of
phylogeny. [Brownian motion; gene expression data; geometric morphometrics; morphological integration; squared-change

parsimony; phylogeny; shape; stabilizing selection.]

Whether quantitative data should be used for
estimating phylogenies has long been debated (Kitching
et al. 1998; Felsenstein 2002). Much of these discussions
have concerned scalar traits such as single length
measurements or ratios between two measurements.
In recent years, the debate has shifted mostly to
multidimensional characters, where a number of
quantities jointly characterize complex features of
organisms or populations. Some early studies that
pioneered phylogenetics were based on considerations
of multidimensional spaces of allele frequencies for
multiple loci (Cavalli-Sforza and Edwards 1967) and
several more recent studies have estimated phylogenetic
trees from data on gene expression (Enard et al. 2002;
Rifkin et al. 2003; Uddin et al. 2004; Brawand et al. 2011),
but most such analyses have used morphometric data on
the shapes of organisms or their parts (e.g., Lockwood
et al. 2004; Gonzélez-José et al. 2008; Aguilar-Medrano
etal. 2011; Smith and Hendricks 2013; Watanabe and Slice
2014; Catalano et al. 2015; Brocklehurst et al. 2016; Perrard
etal. 2016; Bjarnason et al. 2017; Catalano and Torres 2017;
Schroeder et al. 2017; Parins-Fukuchi 2018b; Alvarez-
Carretero et al. 2019). It remains contentious, however,
whether the phylogenies estimated from quantitative
multidimensional variables are reliable.

During the last two decades, several proposals
for estimating phylogenies from morphometric data
have been discussed contentiously. Some authors have
suggested phylogenetic analyses based on cladistic
characters derived from partial warp scores (Fink and

Zelditch 1995; Zelditch et al. 1995, 1998; Swiderski
et al. 1998; Bogdanowicz et al. 2005; Clouse et al. 2011)
or principal component (PC) scores (MacLeod 2002;
Gonzalez-José et al. 2008, 2011; Aguilar-Medrano et al.
2011; Brocklehurst et al. 2016). These proposals, however,
have been criticized for various reasons, especially
the decomposition of phenotypic spaces into distinct
characters (Bookstein 1994; Naylor 1996; Adams and
Rosenberg 1998; Rohlf 1998; Monteiro 2000; Adams
et al. 2011; Zelditch et al. 2012). Some authors have
advocated methods that use landmarks as characters in
cladistic analysis (Catalano et al. 2010, 2015; Goloboff
and Catalano 2011; Catalano and Goloboff 2012; Perrard
et al. 2016; Catalano and Torres 2017; Dehon et al.
2017; Ospina-Garcés and de Luna 2017; Ascarrunz et al.
2019; Palci and Lee 2019). An alternative is to use
methods that avoid dividing the phenotypic variation
into characters, but infer trees from distances among taxa
using clustering techniques such as neighbor-joining
(Polly 2001; Lockwood et al. 2004; Couette et al. 2005;
Macholédn 2006; Cardini and Elton 2008; Bjarnason et al.
2011, 2015, 2017; Cruz et al. 2012; Galland and Friess 2016;
Galland et al. 2016; Schroeder et al. 2017; Ascarrunz et al.
2019), UPGMA (Marcus et al. 2000; Polly 2001; Cardini
2003; Cardini and O’Higgins 2004; Cardini and Elton
2008; Piras et al. 2010; Watanabe and Slice 2014; Koehl
and Hass 2015; Pecnerova et al. 2015; Karanovic et al.
2016; Gabelaia et al. 2017; Zelditch et al. 2017), or other
clustering methods (Cannon and Manos 2001; Polly 2001;
Bjarnason et al. 2011). Other studies have estimated

863

0202 ¥snBny 0z uo 1s9nB Aq 6EEIL L G/£98/G/69/101E/0IqSAS/W0D dNO"dIWapEoR)/:SARY WO} POPEOJUMOQ



864 SYSTEMATIC BIOLOGY

VOL. 69

phylogenies from morphometric data using statistical
approaches such as maximum likelihood (Cannon
and Manos 2001; Polly 2003a,b; Caumul and Polly
2005; Gonzalez-José et al. 2008; Ascarrunz et al. 2019)
or Bayesian methods (Parins-Fukuchi 2018a, b; Alvarez-
Carretero et al. 2019). Theoretical studies and computer
simulations have demonstrated, however, that random
evolutionary processes such as Brownian motion
frequently produce convergence, so that phenotypic
distance may not be a good indicator of time because
divergence and the resulting estimates of phylogenies
thus may be unreliable (Lynch 1989; Stayton 2008). A
large empirical comparison of a range of methods in 41
morphometric data sets found that different methods
tend to produce similar and fairly poor results (Catalano
and Torres 2017).

These debates raise the question of how the quality of
estimated trees can be assessed. So far, the majority of
such assessments have compared trees obtained from
morphometric data to reference trees obtained from
other evidence, most often from molecular data (Cole
etal. 2002; Lockwood et al. 2004; Cardini and Elton 2008;
Gonzélez-José et al. 2008; Klingenberg and Gidaszewski
2010; Catalano and Goloboff 2012; Perrard et al. 2016;
Catalano and Torres 2017; Gabelaia et al. 2017; Ascarrunz
et al. 2019). This type of comparison, however, can
be problematic. First, it is often unclear whether the
reference tree accurately represents the phylogeny of
the taxa (e.g., because of differences between gene trees
and species trees; Maddison 1997). Second, many of
these studies produced partial agreement in the trees,
so that the results are inherently ambiguous: adherents
of a particular method can emphasize that the trees are
partly correct, critics can point out that other aspects are
wrong. For instance, Smith and Hendricks (2013, p. 377)
“consider it impressive” that morphometric characters
were able to allocate 33-45% of taxa successfully to
their positions in a phylogenetic tree, whereas skeptics
might argue that this implies a clear majority of failures.
A way to avoid this ambiguity is to use computer
simulations of evolution, where the true tree is known
with certainty, and to use simple phylogenetic trees,
so that there is no equivocation whether an estimated
tree is right or wrong. This approach has been used
for testing methods to infer phylogenies from molecular
data (Huelsenbeck and Hillis 1993; Hillis et al. 1994;
Huelsenbeck 1995). Simulations have been used in the
context of geometric morphometrics to explore the
consequences on phylogenetic inference (Polly 2004;
Perrard et al. 2016; Parins-Fukuchi 2018a, b; Alvarez-
Carretero et al. 2019). However, the simulations were
conducted only under restricted sets of parameters
(e.g., dimensionality, patterns of trait integration, branch
lengths) and results are, therefore, difficult to generalize.

This study uses several sets of simulations to analyze
how accurately phylogenies can be estimated using
quantitative multidimensional data and what factors
influence the quality of the resulting estimates. We
use the four-taxon case as the simplest situation where

different unrooted trees are possible (Felsenstein 1978a;
Huelsenbeck and Hillis 1993). Because there are just
three possible trees, there is no ambiguity whether
estimated trees are partly correct or partly incorrect.
This approach makes it possible to compare different
methods for estimating phylogenies and to examine
systematically the effects of different combinations of
branch lengths in the phylogeny (Felsenstein 1978a;
Huelsenbeck and Hillis 1993). Perhaps more importantly,
we implement several models that make different
assumptions of how phenotypic traits evolve. Because
dimensionality is a fundamental characteristic of
multivariate traits and is likely to affect the reliability
of phylogeny estimation (Felsenstein 2002), we conduct
simulations for different numbers of dimensions. A
related concept is phenotypic integration, which reflects
how different traits are related to each other and
how variation is spread across the dimensions of
the phenotypic space (Klingenberg 2008, Goswami
et al. 2014). To examine its effect on the reliability of
phylogenetic estimates, we conduct simulations with
different patterns of integration. Because stabilizing
selection has been shown to be an important factor in
macroevolution (Estes and Arnold 2007), we include
simulations that examine its effect on phylogenetic
reliability. Finally, to assess how these results apply to
analyses with more than four taxa, we conduct a further
series of simulations with up to eight taxa. Together,
these simulations assess how reliably phylogenies can be
inferred from multidimensional data under a wide range
of conditions. By examining the potential and limitations
of the methods and of the data, the simulations
provide new and decisive information to the debate
about the role of multidimensional quantitative data in
phylogenetics.

MATERIALS AND METHODS

Simulation Strategy

Complex phenotypes can be represented in
multidimensional spaces, in which evolving populations
appear as points in locations corresponding to
their average phenotypes. Examples of such
multidimensional spaces are the space of gene
expression (e.g., Brawand et al. 2011) and shape
tangent spaces (Dryden and Mardia 1998; Kendall
et al. 1999) or, for structures with object symmetry,
the subspace of the shape tangent space containing
the symmetric component of variation (Klingenberg
et al. 2002; Klingenberg 2015). Evolution of the mean
phenotype in a population corresponds to movement of
the respective point through the phenotypic space.

Our strategy consists of repeatedly running
evolutionary simulations for four taxa in a phenotypic
space (Fig. 1) and estimating the unrooted tree from the
resulting multidimensional phenotypes. The proportion
of simulations in which these estimates match the tree
topology used in the simulation, the proportion of
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FiGure1. Examples of the two different evolutionary models used in
the study. a) Brownian motion model. At each iteration,the phenotypic
values change randomly. b) Stabilizing selection. At each iteration, the
phenotypic values are attracted toward the phenotypic optimum (a
phenotypic value of 35 in this case) and also have a small amount of
random movement.

correct estimates, is a natural measure of reliability of
the phylogeny reconstruction. Because there are only
three possible trees (Fig. 2a), it is feasible to evaluate
all three possible trees for each simulation and the
analyses are, therefore, guaranteed to find the optimal
tree in each simulation. Most importantly, however,
it is completely clear that one tree is correct and the
other two are incorrect. Therefore, there is none of
the ambiguity about whether a reconstructed tree is
“mostly correct” or “incorrect in some fundamental
features,” as it occurs almost inevitably in discussions of
empirical examples involving more taxa. A separate set
of simulations (Experiment 5, below) explores how the
findings from the four-taxon trees extend to analyses
with more taxa and also uses methods to quantify how
much the true and estimated trees differ.

Evolutionary models.—Our simulations use evolutionary
models that are variants of Brownian motion. Brownian
motion has been of fundamental importance as an
evolutionary model in discussions about phylogenies
and quantitative traits (Cavalli-Sforza and Edwards 1967;
Felsenstein 1973, 2002; Lynch 1989; Stayton 2008). This
model assumes that the phenotype of each lineage
evolves by a random change in each short time interval,
that this change is equally likely in every direction of
the phenotypic space, and that the change is additive
over longer time spans. The resulting evolutionary
trajectory is a random walk through the phenotypic
space (Fig. 1a). Under a Brownian motion model, there
is an association between the time since the splitting
of two lineages and the expected distance between
the corresponding phenotypes, providing a possible
basis for estimating phylogeny. This association is not
deterministic, however, but has a substantial stochastic
component of variation, such that estimating the

a)

b)

c)

FIGURE 2. The three possible unrooted trees and two scenarios
for varying branch lengths in the simulations. a) True phylogenetic
tree simulated (left) and the two other possible tree topologies (right).
b) Variation in branch lengths contrasting terminal-versus-internal
branches. All the terminal branches share a length and the internal
branch has a different length. The relative lengths of the two sets
of branches are varied from 1:20 to 20:1. When the internal branch
is very long relative to the terminal branches (right), it is expected
that estimating the phylogeny should be reliable. ¢) Variation in
branch lengths contrasting two terminal branches with the three
remaining branches (2-versus-3-branch scenario). The situation at the
left, where two terminal branches at either end of the internal branch
are much longer than the remaining three branches, is well known to
be particularly challenging.

phylogeny from the distances between the phenotypes
of the terminal nodes is inevitably fraught with a degree
of uncertainty (Lynch 1989).

To conduct simulations under a Brownian motion
model, random walks of lineages through the
phenotypic space can be implemented explicitly
(Fig. 1a). It is more efficient, however, to obtain changes
along the branches in the phylogeny directly as random
vectors drawn from multivariate normal distributions
with variances proportional to the respective branch
lengths and zero covariances among variables (this
follows from the multivariate version of the central
limit theorem; e.g., Mardia et al. 1979). The phenotypes
for the four terminal nodes can then be obtained by
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combining these changes in accordance with the true
phylogenetic tree (tree 1; Fig. 2a). All the simulations
were implemented using the R 2.10 statistical package
(R Core Team 2013).

Variation in branch lengths.—Branch lengths reflect
the opportunity for evolutionary change along the
branches of a phylogeny, and result jointly from the
rate of evolutionary change and the time interval
corresponding to the respective branch of the phylogeny.
To examine the effects of variation in branch lengths, we
systematically explore different combinations of branch
lengths, as in the simulation study of Huelsenbeck
and Hillis (1993). We conduct two different sets of
simulations, one to analyze the effects of the relative
lengths of internal versus terminal branches (Fig. 2b) and
another set to study the effect of long-branch attraction
and related difficulties for phylogeny reconstruction
(Fig. 2¢). In both cases, we divide the five branches into
two groups, within which all the branches have the same
length.

In the first case, one group contains the four terminal
branches and second group consists of just the internal
branch (Fig. 2b). Reconstructing the phylogeny should
be easier when the internal branch is much longer than
the terminal branches, because this situation provides
ample opportunity for the two internal nodes to diverge,
whereas each of them is likely to remain close to its
two adjoining terminal nodes. Conversely, if the internal
branch is much shorter than the terminal branches, such
that the tree approaches a polytomy, all four taxa are
expected to be roughly equidistant to one another and
which tree fits the data best is substantially a matter
of chance. If the internal branch actually has length
zero (i.e., if there is a polytomy), the three possible
unrooted trees represent the true tree equally well; in
this case, evaluating the phylogenetic reconstruction
does not make sense. Whereas these expectations are
fairly straightforward, it is not clear to what extent
intermediate combinations of branch lengths provide
reliable estimates of phylogeny. Our simulations aim to
establish this under several evolutionary models.

In the second type of simulations, the internal branch
and one terminal branch at either end of it have one
branch length and the other two terminal branches have
another branch length (Fig. 2c). This arrangement of
relative branch lengths has been shown to pose potential
challenges to phylogenetic methods (Felsenstein 1978a;
Huelsenbeck and Hillis 1993; Huelsenbeck 1995). Some
methods may erroneously group together terminal
nodes that are linked to the rest of the tree by long
branches. This situation has long been known as long-
branch attraction or heterotachy, where the rate of
evolutionary changes differs among lineages in the
phylogeny, and has been widely studied in molecular
phylogenetics (Wiens and Hollingsworth 2000; Bergsten
2005; Philippe et al. 2005, Wé&gele and Mayer 2007;
Degtjareva et al. 2012). It is less clear, however, whether
this problem has similarly serious effects on phylogeny
estimation from multidimensional phenotypes.

Experiment 1: Comparison of Estimation Methods

To examine the effect of different methods on
phylogenetic reliability, we conducted a series of
simulations using squared-change parsimony (Huey
and Bennett 1987; Maddison 1991), maximum likelihood
(Felsenstein 1973, 1981), neighbor-joining (Saitou and
Nei 1987), UPGMA clustering (Sneath and Sokal 1973),
as well as two variants of linear parsimony: Wagner
parsimony (Farris 1970; Swofford and Maddison 1987;
Goloboff et al. 2006) and Euclidean parsimony (first
introduced under the name “minimum evolution”
by Cavalli-Sforza and Edwards 1967; Thompson
1973; new name suggested by Klingenberg and
Gidaszewski 2010). These variants have previously
not been clearly distinguished in the phylogenetics
literature, possibly because both methods reduce to the
same minimization criterion for scalar characters. For
multidimensional phenotypes, however, the difference
matters. Computations for Wagner parsimony minimize
the total amount of change for each variable separately,
then adding up the resulting amounts across all
variables, which corresponds to minimizing the total
amount of change over the tree measured as Manhattan
distance (Farris 1970; Swofford and Maddison 1987). By
contrast, Euclidean parsimony minimizes the sum of
changes over all the branches of the tree as Euclidean
distances, using the Pythagorean theorem to combine
changes in different variables. The task of finding such
a tree is known in computer science as the Euclidean
Steiner tree problem (Smith 1992; Promel and Steger
2002; Brazil et al. 2008; Fampa et al. 2016). In the
context of phylogenetic analyses of landmark data,
some recent studies have used a hybrid approach,
called “phylogenetic morphometrics,” which combines
features of both Wagner and Euclidean parsimony
(Catalano et al. 2010; Goloboff and Catalano 2011;
Catalano and Goloboff 2012).

To demonstrate the difference between methods,
two 4-taxon phylogenies were used: a tree with a
short internal branch and long terminal branches
(Fig. 2b) and a second tree with two long terminal
branches at either end of the internal branch and
short remaining branches (Fig. 2c). We ran simulations
for two sets of branch lengths, with the short
branches at 10% and 30% of the length of the
long branches, for which preliminary simulations had
shown that they represented challenging conditions
for phylogeny estimation. For each set of branch
lengths, 1000 simulations of isotropic Brownian motion
in 10 dimensions and another 1000 simulations in 50
dimensions were conducted.

For inferring the phylogeny from the phenotypes of
the terminal nodes using squared-change parsimony,
we used the algorithm of McArdle and Rodrigo
(1994) to reconstruct the phenotypes for the internal
nodes. Tree length was computed as the total of
squared changes, summed over all branches and all
variables, and the shortest tree for each simulation
was accepted as the estimated tree. The maximum
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likelihood estimate, under a model of isotropic Brownian
motion, was obtained using the contml program of the
Phylip package (Felsenstein 2013). Euclidean parsimony
was implemented using the optimization algorithm of
Smith (1992), whereas Wagner parsimony was based
on the algorithm by Farris (1970). Neighbor-joining
and UPGMA trees were obtained from the matrix of
Euclidean distances among phenotypes of the four
taxa in each simulation, using the neighbor program
in Phylip (Felsenstein 2013) with the appropriate
settings.

Experiment 2: Detailed Analysis for the Isotropic Brownian
Motion Model

To assess the effect of different combinations of
dimensionality and of branch lengths on phylogenetic
reliability in more detail, we conducted further
simulations of evolution by Brownian motion.
Dimensionality is a key aspect of multivariate
data, because more phenotypic attributes (e.g., more
landmarks in morphometric studies) can potentially
carry more information, and therefore, might plausibly
improve the quality of phylogenetic estimates. To
examine the effects of dimensionality, we conducted the
simulations using Brownian motion models with 1, 2, 3,
5, 10, 20, 50 and 100 dimensions.

We conducted separate sets of simulations, one
contrasting the internal branch to all four terminal
branches (Fig. 2b) and the other contrasting two terminal
branches at either end of the internal branch to the
other three branches (Fig. 2c). For Brownian motion,
the absolute magnitude of the branch lengths affects
only the overall scale of distances between taxa, but
has no effect on how taxa are arranged relative to
one another in phenotype space. This is different from
molecular evolution, where there are saturation effects if
the product of time and substitution rate becomes very

large, because there are only four possible nucleotides
(or 20 amino acids). Therefore, simulations only need
to vary the ratio of branch lengths in the two groups of
branches, but not the absolute branch length. In both sets
of simulations, the ratio of branch lengths ranged from
1:20 to 20:1.

The phenotypic variation in these simulations was
isotropic, with variances that were proportional to
branch lengths and the same for all dimensions,
and variation was independent among dimensions.
For each number of dimensions and combination
of branch lengths, phenotypes were obtained from
5000 simulations. To reconstruct phylogenies, we used
squared-change parsimony for this set of simulations
(and all subsequent ones), because the comparisons in
Experiment 1 showed that this method performs well
and because it is computationally efficient. Phylogenetic
reliability was quantified as the percentage of the
5000 simulations in which squared-change parsimony
returned the correct tree (tree 1).

Experiment 3: Brownian Motion with Phenotypic
Integration

The model of isotropic variation, implying
independent evolution of all phenotypic traits at
equal rates and an equal amount of variation in all
dimensions of the phenotypic space (Fig. 3a), is not
a realistic representation of biological data, where
integration among traits is virtually ubiquitous (Olson
and Miller 1958; Cheverud 1996; Wagner et al. 2007;
Klingenberg 2008, 2013). Integration means that traits are
correlated with each other and that, as a result, variation
is concentrated in certain directions in phenotypic
space (Wagner 1984; Klingenberg 2008; Pavlicev et al.
2009). Integration may be detrimental for phylogeny
estimation because multiple traits may convey the
same information, rather than each trait adding new
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FIGURE 3.

Principal Components

Principal Components

Examples of the models of integration used in the study (shown here for 10 dimensions). a) The model of isotropic Brownian

motion, with no integration: all dimensions have the same amount of variation. b) The model of high integration, where a single dimension
accounts for 80% of the total variation and the other dimensions share the remaining 20%. c) The exponential integration model, where the
distribution of variances across dimensions of the phenotypic space follows an exponential function, with each dimension accounting for 60%

of the variance in the preceding dimension.
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information, or because the variation may not occupy
the entire dimensionality available in the phenotypic
space.

We include two sets of simulations to investigate the
effects of integration on estimation of phylogeny from
multidimensional traits (Fig. 3). One model simulates
very strong integration, in which a single dimension
accounts for 80% of the total variation and all the other
ones take up the remaining 20% of variation in equal
amounts (Fig. 3b). In another model, the relative amount
of variance decreases in an exponential manner from
one dimension to the next, so that the variance in
each dimension is 60% of the variance in the preceding
dimension (Fig. 3c). For comparison with empirical
data, these variances are equivalent to the eigenvalues
obtained from a principal component analysis (PCA) of
the evolutionary covariance matrix in the data.

For this set of simulations, tree length was computed
using squared-change parsimony, which treats changes
in every direction of phenotypic space in the same
way. Because this method for estimating phylogeny
is based on the relative arrangement of phenotypes
of the different taxa in a multidimensional space, the
orientation of the coordinate system does not influence
the results. Because of this invariance to orientation,
we can choose any coordinate system without loss
of generality. Accordingly, we use the PCs of the
evolutionary covariance matrix as the coordinate system
for our simulations, so that evolutionary changes in the
resulting coordinates are uncorrelated with one another.
We can, therefore, simulate the evolutionary change
on each branch by independently drawing random
deviations from normal distributions with variances as
described above (Fig. 3), multiplied with the respective
branch length.

Compensating for integration.—In principle, it is possible
to address the problem of integration among traits
by wusing Mahalanobis distances for estimating

phylogenies (Felsenstein 1973, 1981, 1988; Alvarez-
Carretero et al. 2019). Mahalanobis distances are based
on a transformation of the phenotypic space that, if the
assumptions are met, produces a modified space where
variation is isotropic. To achieve this, the transformation
relatively shrinks those axes of the phenotypic space
that account for much of the total variation and
relatively stretches those axes that account for little
variation. Usually, this transformation is applied to the
variation within groups (Mardia et al. 1979; Klingenberg
and Monteiro 2005), but in the present context, the
phenotypic space is transformed so that evolutionary
variation becomes isotropic. In this modified space,
therefore, the effect of evolutionary integration has been
removed. This transformation, however, comes with
other potentially fundamental changes in the scaling of
different dimensions and in the relative arrangement of
taxon averages.

If the evolutionary covariance matrix were known,
therefore, the phenotypic space could be scaled by the

inverse of this matrix, transforming the space to a new
space of Mahalanobis distances, in which the isotropic
Brownian motion model for evolutionary change would
apply. In practice, however, the evolutionary covariance
matrix usually is not known, but must be estimated
from the available data, which is exceedingly difficult
if the phylogeny itself is also unknown (Felsenstein 1973,
1988, 2002). In principle, the phylogeny and evolutionary
covariance matrix could be estimated simultaneously,
but stringent limits on the relative number of taxa and
dimensions of the phenotypic space apply (Felsenstein
2002).

For the purpose of this study, we made a series of
assumptions that should be very favorable for phylogeny
estimation, even though unrealistic for most clades
of actual organisms: evolution is by pure drift, the
phenotypic, additive genetic and mutational covariance
matrices are proportional, and these covariance matrices
are constant across the phylogeny. If these assumptions
are met, the within-population covariance matrix can
be used as a substitute for the evolutionary covariance
matrix to obtain the transformed phenotypic space.
Even though these assumptions are unlikely to be met
by biological data, we use them in our simulations,

as did a previous study (Alvarez-Carretero et al.
2019). We carried out separate simulations using the
sample covariance matrix and a shrinkage estimator
of the covariance matrix for computing Mahalanobis

distances (Ledoit and Wolf 2004; Alvarez-Carretero
et al. 2019). For further details, see Supplementary
Appendix SA1, available on Dryad at https://doi.org/
10.5061 /dryad.sk244r4).

Experiment 4: Stabilizing Selection Model

Stabilizing selection appears to be widespread (e.g.,
Estes and Arnold 2007) and it can potentially have
serious effects on estimates of phylogeny from the
traits it affects (Polly 2004). We simulated stabilizing
selection using an Ornstein-Uhlenbeck model with a
single adaptive peak (Hansen 1997). With more than
one adaptive peak, the behavior of the model would be
dominated by the assumptions about the processes of
switching between peaks. Because little is known about
these processes and implementation is problematic for
small numbers of taxa, we limited the simulations to a
single adaptive peak.

The simulations of evolution under stabilizing
selection were conducted as explicit random walks,
starting from a root of the phylogeny located at the
midpoint of the internal branch (Fig. 1b). At each interval
from time t to t + 1, each population changes its position
from x; to x;41 following the equation x;y1= x¢+o(0-
X¢) + 0, where o is a coefficient indicating the strength
of stabilizing selection, 0 is the position of the adaptive
peak, and ¢ is an isotropic random deviation, drawn
from a multivariate normal distribution with zero mean
and an identity matrix as the covariance matrix. The
coefficient a can take values from zero (in this case, the
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model will be the same as isotropic Brownian motion)
to unity (in that case, the phenotype will be returned
exactly to the optimum at each iteration, and will only
deviate by the random effect newly added in that round).

Each simulation consisted of a number of iterations
that are determined by the branch lengths, which
were varied in steps of six iterations from 10 to 100
iterations, as required for the simulation (Fig. 2b,c). We
conducted separate simulations with weak and strong
stabilizing selection, which use values of a = 0.05 and
a = 0.3, respectively. The simulations started with two
populations at the root of the phylogeny, midway on the
internal branch of the unrooted tree, both with initial
phenotypes xg = (0, . . . ,0). To test for the effect of the
initial conditions, we conducted separate simulations
where the starting point coincides with the optimal
phenotype, 8 = (0, . . . ,0). A separate set of simulations
was conducted for the situation where the starting point
is at a distance to the optimum, which was set to 8 =
(35,0, ...,0) (Fig. 1b). This is equivalent to a model that
initially contains a component of directional selection,
which then diminishes as each lineage approaches the
optimum phenotype.

For each set of branch lengths, dimensionality,
strength of stabilizing selection, and location of the
optimum, we conducted 2000 simulations. Squared-
change parsimony was used to estimate phylogenies.

Experiment 5: Simulations with More Than Four Taxa

To examine how the results for trees with four taxa
extend to a greater number of taxa, we ran additional
simulations using up to eight taxa. The main difference
to four-taxon simulations is that there are many more
possible tree topologies (e.g., for 8 taxa, there are 10,395
unrooted bifurcating trees; Felsenstein 1978b, 2004). This
rise in the number of possible trees entails some further
complications. First, the computational effort required
increases rapidly with the number of taxa. We chose the
limit of eight taxa because this is the maximum for which
it is feasible to conduct exhaustive searches in order to
identify shortest trees with certainty. Second, there is the
question of how the topology for the true phylogenetic
tree to be used in the simulations should be chosen.

To obtain an insight into the overall effect of taxon
number, we used trees randomly drawn from a uniform
distribution over all unrooted bifurcating tree topologies
with the appropriate number of taxa. Branch lengths
were chosen so that they were the same for all internal
branches and for all terminal branches, with ratios
of internal to terminal branch lengths of 0.05, 0.1,
0.25, 05, 1, 2, 4, 10 and 20 in different simulation
runs. Phenotypic evolution was simulated as isotropic
Brownian motion or as Brownian motion according
to the exponential integration model (see above and
Fig. 3c). These simulations were run for phenotypes
with 2, 5, 10, 20, 50 and 100 dimensions. For each
combination of branch length ratio, evolutionary model,
dimensionality and number of taxa, 1000 simulations

were run. Squared-change parsimony was used as the
method for estimating phylogeny.

To assess the performance of phylogenetic estimation,
we scored the results for phylogenetic reliability as the
proportion of simulation runs where the correct tree
was returned. For more than four taxa, there is also
the question how close an estimated tree is to the true
one, even if it is not exactly correct. To address this
question, we computed distances between the true and
estimated trees using two topological distance measures:
the Robinson-Foulds distance (Robinson and Foulds
1981) and the quartet distance (Estabrook et al. 1985).
Both are metrics, but they differ somewhat in their
properties (Steel and Penny 1993; Smith 2019a). The
Robinson—-Foulds distance was computed with the ape
package in R (Paradis and Schliep 2019) and quartet
distance with the Quartet library (Smith 2019b). Because
both these distance measures depend on the number
of taxa in the trees being compared, we standardized
the distances. To do so, we divided the distances by
the expected distance between pairs of random trees
with the appropriate number of taxa. For up to seven
taxa, those expected distances were computed by full
enumeration and are therefore exact; for eight taxa, the
average was taken over a sample of 1 million pairs of
random trees.

To explore whether the topology of the tree used to
generate has an effect on the reliability of phylogenetic
estimation, we conducted a series of simulations using
extreme tree shapes. For details, see Supplementary
Appendix SA2, available on Dryad.

RESULTS

Experiment 1: Comparison of Methods

The differences in performance among methods
depend on the branch-length scenarios. For simulations
with a true tree in which the internal branch is 30%
as long as the terminal branches (Fig. 2b) and a 50-
dimensional phenotype, all methods did similarly well:
squared-change parsimony found the correct tree in
70.5% of simulations, maximum likelihood in 70.4%,
Euclidean parsimony in 70.6%, Wagner parsimony
in 67.9%, neighbor-joining in 70.0%, and UPGMA in
63.0% (Table 1). In the 2-versus-3-branch scenario
(Fig. 2c), there were marked differences among methods:
squared-change parsimony found the correct tree in
84.3% of simulations, maximum likelihood in 84.7%,
Euclidean parsimony in 81.9%, Wagner parsimony in
74.8%, neighbor-joining in 78.5%, and UPGMA in 14.8%
of the simulations (Table 1). In the vast majority of
simulations, squared-change parsimony and maximum
likelihood yielded the same trees, regardless whether
correct or incorrect (99.7% for internal vs. terminal
branches, 99.5% for 2 vs. 3 branches; Table 1). In
corresponding simulations with Brownian motion in
10 instead of 50 dimensions, the results were similar,
but all methods performed somewhat worse and the

0202 ¥snBny 0z uo 1s9nB Aq 6EEIL L G/£98/G/69/101E/0IqSAS/W0D dNO"dIWapEoR)/:SARY WO} POPEOJUMOQ


https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa003#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa003#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa003#supplementary-data

870 SYSTEMATIC BIOLOGY VOL. 69

TaBLE 1.  Comparisons of different methods for estimating phylogenies

Internal-versus-terminal branches 2-versus-3 branches

Tree 1 Tree 2 Tree 3 Tree 1 Tree 2 Tree 3
Squared-change parsimony (rows) versus maximum likelihood (columns)
Tree 1 703 1 1 843 0 0
Tree 2 0 154 0 4 78 1
Tree 3 1 0 140 0 0 74
Squared-change parsimony (rows) versus Euclidean parsimony (columns)
Tree 1 703 2 0 819 22 2
Tree 2 2 150 2 0 83 0
Tree 3 1 1 139 0 7 67
Squared-change parsimony (rows) versus Wagner parsimony (columns)
Tree 1 632 40 33 730 85 28
Tree 2 23 118 13 9 71 3
Tree 3 24 10 107 9 15 50
Squared-change parsimony (rows) versus neighbor-joining (columns)
Tree 1 695 8 2 782 59 2
Tree 2 3 148 3 0 83 0
Tree 3 2 1 138 3 16 55
Squared-change parsimony (rows) versus UPGMA (columns)
Tree 1 558 82 65 144 689 10
Tree 2 40 96 18 4 79 0
Tree 3 32 24 85 0 68 6
Maximum likelihood (rows) versus Euclidean parsimony (columns)
Tree 1 701 2 1 819 26 2
Tree 2 3 150 2 0 78 0
Tree 3 2 1 138 0 8 67
Maximum likelihood (rows) versus Wagner parsimony (columns)
Tree 1 630 40 34 731 88 28
Tree 2 24 118 13 8 68 2
Tree 3 25 10 106 9 15 51
Maximum likelihood (rows) versus neighbor-joining (columns)
Tree 1 693 8 3 782 63 2
Tree 2 4 148 3 0 78 0
Tree 3 3 1 137 3 17 55
Maximum likelihood (rows) versus UPGMA (columns)
Tree 1 556 82 66 144 693 10
Tree 2 41 96 18 4 74 0
Tree 3 33 24 84 0 69 6
Euclidean parsimony (rows) versus Wagner parsimony (columns)
Tree 1 633 40 33 725 67 27
Tree 2 23 118 12 13 93 6
Tree 3 23 10 108 10 1 48
Euclidean parsimony (rows) versus neighbor-joining (columns)
Tree 1 698 6 2 782 37 0
Tree 2 1 151 1 0 112 0
Tree 3 1 0 140 3 9 57
Euclidean parsimony (rows) versus UPGMA (columns)
Tree 1 561 80 65 144 665 10
Tree 2 38 99 16 4 108 0
Tree 3 31 23 87 0 63 6
Wagner parsimony (rows) versus neighbor-joining (columns)
Tree 1 633 23 23 710 28 10
Tree 2 35 123 10 47 119 5
Tree 3 32 11 110 28 11 42
Wagner parsimony (rows) versus UPGMA (columns)
Tree 1 542 75 62 143 598 7
Tree 2 45 103 20 3 166 2
Tree 3 43 24 86 2 72 7
Neighbor-joining (rows) versus UPGMA (columns)
Tree 1 563 73 64 144 631 10
Tree 2 37 105 15 4 154 0
Tree 3 30 24 89 0 51 6

Notes: Tabled values are the counts of how often particular combinations of trees were returned by the two methods in the comparison, for 1000
simulations per scenario. Two scenarios, corresponding to trees with different branch lengths, were used for simulations with Brownian motion
in 50 dimensions: internal-versus-terminal branches (Fig. 2b), in which the internal branch had a length of 0.3 and the terminal branches had
lengths of 1.0, and a scenario of 2-versus-3 branches (Fig. 2c), in which the internal branch and two terminal branches at either end of it had
lengths of 0.3 and the two remaining terminal branches had lengths of 1.0. The correct tree in all simulations is tree 1.
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FIGURE 4.  Phylogenetic reliability under Brownian motion models. a) Evolutionary model with isotropic Brownian motion (Experiment

2). b) Model of Brownian motion with high integration (Experiment 3, see Fig. 3b). c) Model of Brownian motion with exponential integration
(Experiment 3, see Fig. 3c). The solid lines represent the simulations with the internal-versus-terminal branch scenario, the dashed lines those
with the 2-versus-3-branch scenario. In each panel, phylogenetic reliability, as the percentage of correct phylogenetic estimates, is plotted on the
vertical axis (dotted horizontal lines at 33.33% and 100%, for randomly chosen trees and perfect reliability) and the branch length ratios on the
horizontal axis (logarithmic scaling; challenging scenarios with short internal branch or high long-branch attraction with low ratios, to the left;
easier scenarios with higher ratios, to the right). The number at the top of each panel is the dimensionality of the phenotypic space used in the

respective set of simulations.

differences between them were slightly less accentuated
(Supplementary Table S1, available on Dryad).

Success rates were lower overall in simulations where
the shorter branch lengths were 10% of those of
the longer branches, instead of 30%. In particular, in
the 2-versus-3-branch scenario with a 50-dimensional
phenotype, some pronounced differences between
methods emerged: squared-change parsimony found
the correct tree in 60.2% of simulations, maximum
likelihood in 66.3%, Euclidean parsimony in 44.8%,
Wagner parsimony in 23.6%, neighbor-joining in 21.7%,
whereas UPGMA never produced the correct tree
(Supplementary Table S2, available on Dryad). In
this series of simulations, squared-change parsimony
and maximum likelihood returned the same tree in
92.0% of simulations, confirming the close relation
between the two methods (Supplementary Table S2,
available on Dryad). Because squared-change parsimony
consistently performed best or close to best (in
those series where maximum likelihood performed
better), and because of its computational efficiency,
we exclusively use squared-change parsimony for the
remaining simulations, which focus on the reliability of

estimated phylogenies in response to properties of the
data.

Experiment 2: Detailed Analysis for the Isotropic Brownian
Motion Model

The more detailed simulations using isotropic
Brownian motion show that two major determinants
of phylogenetic reliability are the relative branch
lengths and dimensionality of the phenotype (Fig. 4a).
Phylogenetic reliability improves consistently, and may
reach 100%, as the ratio of internal to terminal branch
lengths increases (Fig. 4a, solid lines, from left to right
in the diagrams). This improvement becomes more
accentuated with increasing dimensionality. From lower
to higher dimensionality of the phenotype, the region of
high or perfect phylogenetic reliability expands toward
shorter relative lengths of the internal branch.

At low dimensionality, the 2-versus-3 branch scenario
(dashed lines in Fig. 4a) appears more challenging than
the situation where the internal branch is contrasted
to the four terminal branches (solid lines in Fig. 4a).
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For very high dimensionality, however, the phylogenetic
reliability is good even for simulations with a moderate
degree of long-branch attraction, where two terminal
branches at opposite ends of the internal branch are
longer than the remaining three branches (left side of
the diagrams in Fig. 4a, dashed lines).

Experiment 3: The Effect of Phenotypic Integration

Phenotypic integration has a strong adverse effect on
the accuracy of phylogenetic estimates (Fig. 4b,c). For
the model with high integration, where one dimension
contains 80% of the total variation (Fig. 3b), there is
a change in the relation between branch length ratios
and reliability from one to two dimensions, but then
this relation remains nearly the same for all simulations
with greater dimensionality (Fig. 4b). In contrast to
the simulations with isotropic variation (Fig. 4a),
where phylogenetic reliability improves with increasing
dimensionality, it appears that this improvement ceases
after two dimensions for the high-integration model
(Fig. 4b). Similarly, for the exponential integration model
(Fig. 3c), the benefit of higher dimensionality extends to
about five dimensions, butincluding dimensions beyond
that provides no further improvement (Fig. 4c). This loss
of the improved phylogenetic reliability with higher-
dimensional phenotypes affects both the internal-
versus-terminal and the 2-versus-3 branch scenarios
(solid and dashed lines in Fig. 4b,c). Under either
model of integration, high phylogenetic reliability is only
achieved under very special conditions, if the internal
branchis extremely long relative to the terminal branches
(Fig. 4b,c).

The separate series of simulations using Mahalanobis
distance in phylogenetic estimation showed that
this approach ameliorated the effects of phenotypic
integration partly but not completely. These simulations
identified the sample size used to estimate covariance
structure as a further complicating factor, and the
shrinkage estimate performed somewhat better than
sample covariance matrices (for further details, see
Supplementary Appendix SA1, available on Dryad).

Experiment 4: The Effect of Stabilizing Selection

Phylogenetic reliability under an evolutionary process
with stabilizing selection, for most combinations of
branch lengths, is not much better than drawing trees
randomly (Fig. 5). If stabilizing selection is weak, the
accuracy of the estimates is better where the terminal
branches are much shorter than the internal branch
(at the bottom of the diagrams in Fig. 5a,b), especially
when the dimensionality is high. For the 2-versus-3
branch simulations, reliability is best if all branches are
short and more or less equal (lower-left corners of the
diagrams in Fig. 5d,e; note that this situation, with all
branches short, is similar to the lower-left corners of the
diagrams in Fig. 5a,b). A particular situation occurs for
the simulation with weak stabilizing selection with an

Weak selection
Off the optimum

Weak selection
On the optimum

Strong selection
Off the optimum

a) b) c)
X<
1
2
3 5
10 20
50 100
d) e) f)
> ><
S :_ :
Phylogenetic reliability
0 20 40 60 80 100
[
FIGURE 5. Phylogenetic reliability in the simulations

using evolutionary models with stabilizing selection (Experiment
4). Phylogenetic reliability is indicated by color (see color scale at
the bottom) as a function of the branch-length combination and
dimensionality. For simulations with the internal-versus-terminal
branch scenario (a—c), the x-axis in each diagram represents the length
of the internal branch and the y-axis the lengths of the terminal
branches. For the simulations using the 2-versus-3 branch scenario (d—
f), the y-axis represents the lengths of two branches at opposite ends
of the internal branch and the x-axis the lengths of the remaining three
branches (i.e., the strongest long-branch attraction occurs in the upper
left corner of each panel). The numbers in the panels of part a) indicate
the number of dimensions used in the simulations; the other parts use
the same arrangement.

initial phenotype at some distance from the optimum
and with strong long-branch attraction. In this situation,
only the lineages of the two long terminal branches
have time to approach the optimum. Consequently, the
incorrect tree ((A,D),(B,C)) tends to be shorter than the
correct tree ((A,B),(C,D)). And phylogenetic reliability is
systematically worse than drawing trees randomly (left
edges of the diagrams in Fig. 5e).

With strong stabilizing selection, there is no
combination of branch lengths where the phylogenetic
reliability for estimating phylogenies from the
phenotypic data is perceptibly better than for drawing
phylogenies at random. This is true regardless of
dimensionality and it makes no noticeable difference
whether the simulations start with the optimal
phenotype or at a distance from it (Fig. 5¢,f; simulations
starting at the optimal phenotypes not shown because
the graphs look the same).
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Experiment 5: Trees with More Than Four Taxa

Phylogenetic reliability tends to decrease with
increasing number of taxa (Fig. 6a,b). For more favorable
branch length ratios (internal branches long relative to
terminal branches), the reliability is higher for four taxa
and the decrease more gradual than for unfavorable
branch ratios (internal branches short relative to terminal
branches). The decrease of reliability with increasing
number of taxa is more accentuated for low- than
high-dimensional phenotypes under isotropic Brownian
motion (Fig. 6a), but with phenotypic integration, the
benefit of increasing dimensionality beyond about five
dimensions vanishes (Fig. 6b).

To assess whether estimated trees, even if they did not
match the true trees exactly, were at least a reasonable
approximation, we examined the distances between true
and estimated trees, relative to the distances expected
for pairs of random trees with the corresponding
numbers of taxa. The results for both the Robinson—
Foulds metric (Fig. 6¢c,d) and for the quartet metric
(Supplementary Fig. S1, available on Dryad) are very
similar. For low or medium branch length ratios, the
average relative tree distances between the true and
estimated trees are essentially constant regardless of
the number of taxa, indicating that division by the
expected distance between random trees appears to
be an effective correction for the dependence of tree
distances on the number of taxa. For isotropic Brownian
motion, there is a clear benefit of dimensionality, in that
high-dimensional phenotypes yield lower relative tree
distances than low-dimensional phenotypes (Fig. 6c).
If there is phenotypic integration, this benefit does not
extend beyond approximately five dimensions (Fig. 6d).
Simulations with low branch length ratios produce no
discernible change of relative tree distances with taxon
number. For high branch length ratios, however, there
is a gentle but clear trend for relative tree distances
to rise with increasing numbers of taxa (Fig. 6c¢,d).
Under the model with isotropic Brownian motion, high-
dimensional phenotypes alleviate this trend (Fig. 6¢), but
when there is phenotypic integration, the trend is clearly
apparent no matter how high the dimensionality of the
phenotypic space (Fig. 6d).

To examine whether averaging over random tree
topologies for any given number of taxa might obscure
some relevant differences due to the topology of the
tree used to simulate data, we conducted a set of
simulation using specific topologies with extreme tree
shapes. Phylogenetic reliability and the distributions
of tree distances were similar, indicating that such
differences are subtle (for details, see Supplementary
Appendix SA2, available on Dryad).

Discussion

The simulations in this study have shown
that the accuracy of phylogenetic estimates from
multidimensional phenotypes depends on a number of
factors: the relative branch lengths in the tree used to

generate the data, the dimensionality of the phenotype
under study, and the model of how phenotypes evolve.
Two particularly important aspects of the evolutionary
models are morphological integration and stabilizing
selection. Here, we explore these results further and
evaluate them in light of published evidence to assess
their possible implications for the use of shape or other
multivariate phenotypes for estimating phylogenies.

Comparison of Methods

The comparison of methods is largely consistent
with earlier results that focused on molecular data
(Huelsenbeck and Hillis 1993; Huelsenbeck 1995;
Swofford et al. 1996; Felsenstein 2004), but the choice
of methods covered here reflects those used in studies
with morphometric data. Squared-change parsimony
and maximum likelihood performed similarly well,
in the vast majority of simulation runs returning
the same trees, regardless of whether those were
correct or incorrect (Table 1; Supplementary Tables S1-
S3, available on Dryad). The close relation between
squared-change parsimony and maximum likelihood is
well established (Maddison 1991; Schluter et al. 1997;
Martins 1999; Felsenstein 2004). The difference is that
maximum likelihood includes a weighting by branch
lengths (Felsenstein 1981); the calculations, therefore,
also include estimation of the branch lengths and the
weighting as extra steps that are not carried out for
squared-change parsimony. Note also that, for a uniform
prior distribution, the maximum likelihood tree is also
the tree with the highest posterior probability and
therefore a Bayesian point estimate of the phylogeny
(Huelsenbeck et al. 2001). Because squared-change
parsimony performed nearly as well as maximum
likelihood, butis faster computationally, itis areasonable
choice for the remainder of the simulations in this study:
based on the comparisons, it is very unlikely that a
different method would produce substantially better
results.

There are marked differences in performance between
the two variants of linear parsimony and between
the two clustering methods, especially in the 2-
versus-3-branch scenario. In this situation, Euclidean
parsimony is nearly as accurate as squared-change
parsimony and maximum likelihood (Table 1; but
this does not hold for more extreme branch length
ratios, Supplementary Table S2, available on Dryad),
whereas Wagner parsimony performs clearly worse
(under some circumstances worse than randomly
picking trees; see particularly Table 1; Supplementary
Table S2, available on Dryad). It seems plausible that
this discrepancy relates to the difference in how the two
methods combine changes across variables: Euclidean
parsimony uses the Pythagorean theorem to combine
changes across variables (which involves summing the
squared changes on each branch of the tree), whereas
Wagner parsimony minimizes changes in each variable
separately and then sums them over all variables. Of
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FIGURE6. Simulations exploring the effect of the number of taxa (Experiment 5). For taxon numbers ranging from 4 to 8, true phylogenetic trees
were drawn randomly from a uniform distribution of all unrooted trees with the respective number of taxa. These trees were used to generate
phenotypic data with different dimensionalities, from which the trees then were estimated using squared-change parsimony. a) Phylogenetic
reliability (as the proportion of phylogenetic trees estimated correctly) under an evolutionary model of isotropic Brownian motion (Fig. 3a). b)
Phylogenetic reliability under the exponential integration model (Fig. 3c). c) Average relative tree distances between true and estimated trees
(scaled relative to the expected distance between two random trees for the respective number of taxa) for the simulations under the model of
isotropic Brownian motion. d) Average relative tree distances between true and estimated trees for the simulations under the model of exponential
integration. The number in the corner of each panel indicates the ratio of the lengths of the internal branches to the lengths of the terminal
branches in the trees used in the respective set of simulations. Dimensionalities of phenotypes are distinguished by the types of lines. The relative
tree distances (c, d) are the average of the Robinson-Foulds distances between the true and estimated trees in each set of simulations, divided
by the expected Robinson—Foulds distance between pairs of random trees with the respective number of taxa.
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the two clustering methods, neighbor-joining performed
consistently better than UPGMA. The difference is
especially clear in the 2-versus-3-branch scenario: in
three of the four series of simulations UPGMA was
far worse than picking trees at random (Table 1;
Supplementary Tables S1-S3, available on Dryad). It
is well established that both Wagner parsimony and
UPGMA can produce misleading results under long-
branch attraction (Felsenstein 1978a; Huelsenbeck and
Hillis 1993; Swofford et al. 1996; Felsenstein 2004).

In a methods comparison based on 41 morphometric
data sets (Catalano and Torres 2017), Wagner parsimony,
neighbor-joining, UPGMA, and the “phylogenetic
morphometrics” method that combines Wagner and
Euclidean parsimony (Catalano et al. 2010) all produced
similar and fairly low degrees of congruence between
estimated trees and reference phylogenies, whereas
maximum likelihood and Wagner parsimony based on a
subset of PC scores performed even slightly worse. Those
results are quite different from the simulations in this
study (Table 1; Supplementary Tables S1-S3, available
on Dryad). It is conceivable that long-branch attraction
may only have played a minor role in the 41 empirical
data sets, so that the differences between methods were
not as manifest as in our simulations. Another difference
is that the data sets compiled by (Catalano and Torres,
2017) contained more than 4 taxa (range: 5-160 species),
so that phylogeny estimation may have been inherently
more challenging (Fig. 6). A further difficulty is that the
reference phylogenies were estimated too, based on a
variety of data, and that it is unclear how well they reflect
the actual phylogenies of the respective clades.

The Effect of Dimensionality

Increasing dimensionality has a favorable effect on
phylogenetic accuracy (Figs. 4 and 6). This finding is in
agreement with previous observations that using more
landmarks or variables in simulations produces better
agreement between the estimated trees and the true trees
used to generate the data (Perrard et al. 2016; Parins-
Fukuchi 2018b). It also agrees with the basic intuition that
using more information should lead to a better estimate
of phylogeny.

For fully understanding this result, it is important
to consider the evolutionary models used in the
simulations and how the dimensionality of the
phenotype affects them. Brownian motion has been
widely used as a model for the evolution of phenotypic
traits in one- or multidimensional settings (Cavalli-
Sforza and Edwards 1967; Felsenstein 1973; Lynch 1989;
Polly 2004; Stayton 2008; Perrard et al. 2016). It is an
evolutionary model that is favorable for estimating
phylogeny because the expected distance between taxa
increases monotonically with the time of separation
(Lynch 1989). Yet, a difficulty is that this distance also has
a high variability (a coefficient of variation of 1.4 for one-
dimensional Brownian motion), which may often lead to
convergence, reversals, and parallel evolution that may

produce erroneous phylogenetic estimates (Lynch 1989;
Stayton 2008; Klingenberg and Gidaszewski 2010).

The squared distance between the phenotypes at
either end of a branch of the phylogeny, up to a
scaling factor representing the expected magnitude
of change along the branch, follows a chi-squared
distribution with as many degrees of freedom as there
are dimensions in the phenotypic space (this follows
from the Pythagorean theorem and the definition
of the chi-squared distribution with #n degrees of
freedom as the sum of squared values of n mutually
independent random variates drawn from the standard
normal distribution). The coefficient of variation for
the chi-squared distribution is the square root of
two divided by the square root of the degrees of
freedom (Forbes et al. 2011). The relative variability
of the phenotypic distances therefore diminishes with
increasing degrees of freedom. Note, however, that
a substantial improvement is only achieved with
dimensionalities that are quite high: the coefficient
of variation is 0.44 for 10 dimensions, 0.2 for 50
dimensions, 0.14 for 100 dimensions, and 200 dimensions
are necessary for a coefficient of variation of 0.1. As a
consequence, increasing dimensionality of a Brownian
motion process causes phenotypic distances to become
a more deterministic function of divergence times.
With increasing dimensionality of the phenotype, the
phenotypic distances are therefore expected to be a better
reflection of the underlying branch lengths and it should
become easier to infer phylogenies from phenotypic
divergence.

The benefits of high dimensionality also can be
understood intuitively by considering how probable it
is for convergent evolution to occur, which is a form
of homoplasy and may lead to erroneous phylogenetic
inferences. There is always just one direction in which
two lineages can converge toward each other in
phenotypic space, but with increasing dimensionality,
there are more and more directions in which the lineages
can move away from each other. Convergence is quite
likely in the univariate case, as shown in previous studies
(Lynch 1989), but it becomes less probable as more
dimensions are added (Stayton 2008), thus improving
phylogenetic reliability, as can be seen in our simulation
results (Fig. 4a).

Because high dimensionality reduces stochastic
effects, it also can alleviate the problems of long-
branch attraction and differences in evolutionary rates
among branches in the phylogeny (Fig. 4a, dashed
lines). Yet for methods that are sensitive to long-branch
attraction, such as UPGMA or Wagner parsimony,
high dimensionality can exacerbate such problems (cf.
Table 1 vs. Supplementary Table S1; Supplementary
Tables S2 vs. S3, available on Dryad). In general,
the weaker stochastic effects in simulations using
high dimensionality tend to make the differences in
performance among methods more apparent.

Above all, the benefit of high dimensionality
has implications for the data used in phylogenetic
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analyses. Using methods such as PCA to reduce
the dimensionality of phenotypic data before
phylogenetic analyses would definitely be ill-advised.
In the comparison of Catalano and Torres (2017),
methods including a dimension reduction via PCA
performed slightly worse than methods using the
full dimensionality of the data, and it is possible
that this poorer performance was due to the reduced
dimensionality. Studying phenotypes with high
dimensionality has been proposed as one way of
increasing phylogenetic reliability (Felsenstein 1973;
Polly 2004; Gonzélez-José et al. 2008; Stayton 2008).
Similarly, the suggestion to combine morphometric
data from multiple structures (Catalano et al. 2015;
Perrard et al. 2016; Catalano and Torres 2017) also can
be viewed as a strategy to increase the dimensionality
of the phenotypic space used for inferring phylogenies.
Whether such strategies are effective, however, depend
not only on the dimensionality of the data space, but
also on how closely the phenotypic traits are integrated.

Phenotypic Integration

In the simulations of Brownian motion with
integration, the benefit of increasing dimensionality
ceases at some intermediate level—beyond that
dimensionality, phylogenetic reliabilities seem to be
constant and always worse than the corresponding
simulations with isotropic variation (cf. Fig. 4b,c vs.
4a). The effect resulting from phenotypic integration
is similar to that of a reduction of the dimensionality
to a level that is less than the actual dimensionality
of the phenotypic space. It is worst in the model of
extreme integration (Fig. 3b), where reliability does
not increase beyond a level comparable to isotropic
motion in two dimensions (Fig. 4b). This effect is
more moderate for the exponential integration model
(Fig. 3c), where the benefit stops at approximately
five dimensions (Figs. 4c and 6b,d). For both models,
high phylogenetic reliability only results if the internal
branch is very long relative to the terminal branches
(Fig. 4b,c), a condition that is very unlikely to be met
for most empirical data. In both these models, the point
where phylogenetic reliability ceases to benefit from
higher dimensionality relates to the distribution of
variation across the phenotypic space: because most
variation is concentrated within just a few dimensions
and this distribution remains essentially the same no
matter how many additional dimensions are included,
the overall dimensionality of the phenotypic space
is immaterial for phylogenetic reliability. Including
additional dimensions adds directions that are mostly
devoid of variation and therefore have little or no effect
on phylogenetic reliability.

It appears from these simulations that integration
is a serious problem for phylogenetic reconstruction.
This raises the question whether the simulations of
integration are realistic at all. In actual biological data,
integration is ubiquitous—the variation in the data does

not “fill” the entire dimensionality of the phenotypic
space, but is concentrated mostly in a few of the
available dimensions because of integration (Olson and
Miller 1958; Cheverud 1996; Klingenberg 2008, 2013;
Goswami et al. 2014). The scenario of high integration,
in which 80% of the variation is contained in a single
dimension (Fig. 3b), was designed to be extreme and
probably exceeds the level of integration in real data,
although some examples come quite close (e.g., analyses
where the first PC accounts for more than 60% of
variation among species; Klingenberg et al. 2012). The
exponential model of integration (Fig. 3c) is more
realistic, as numerous examples show comparable or
greater strengths of interspecific integration in geometric
morphometric data (e.g., Monteiro et al. 2005; Sidlauskas
2008; Friedman 2010; De Esteban-Trivigno 2011a,b;
Monteiro and Nogueira 2011; Brusatte et al. 2012; Santana
and Lofgren 2013; Baab et al. 2014; Martin-Serra et al.
2014; Watanabe and Slice 2014; Blanke 2018), although
some other studies found somewhat weaker integration,
albeit still with most variation concentrated in just a
few dimensions (Figueirido et al. 2010; Chamero et al.
2013; Klingenberg and Marugédn-Lobén 2013; Sherratt
et al. 2014). Altogether, by comparison with empirical
data, the exponential model of integration used in
the simulation seems to be fairly realistic. Accordingly,
those simulations are likely to represent evolutionary
integration in actual biological data sets realistically,
and the levels of phylogenetic reliability obtained in our
simulations under the exponential model of integration
represent what usually should be expected in empirical
data.

In principle, the adverse effects of phenotypic
integration can be mitigated by using Mahalanobis
distance in the process of estimating phylogeny
(Felsenstein 1973, 2002; Alvarez-Carretero et al. 2019).
If the correct evolutionary covariance matrix is used
to compute Mahalanobis distances, this eliminates
the effects of integration and phylogenetic reliability
therefore should be the same as for Brownian motion
with no integration. Our simulations show some
improvements of phylogenetic reliability, especially
when the shrinkage estimator of the covariance
matrix is used (Ledoit and Wolf 2004). This is
similar to the results of Alvarez-Carretero et al.
(2019). Nevertheless, phylogenetic reliability is not
restored completely to the levels for Brownian motion
without integration and sampling errors may produce
inaccuracies (Supplementary Appendix SA1, available
on Dryad). It is important to note that the approach
of using within-taxon phenotypic variation to estimate
evolutionary covariance structure makes a number of
key assumptions: evolution is by random drift, and the
phenotypic, additive genetic and mutational covariance
matrices are proportional and constant across the
whole phylogeny. All these assumptions are at best
questionable, and probably unrealistic for most clades
and traits. Therefore, even though it is theoretically
possible (Felsenstein 2002), the difficulties involved in
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estimating the evolutionary covariance matrix without
knowing the phylogeny are likely to render this approach
unworkable. Accordingly, no remedy against the effects
of phenotypic integration exists that is practically viable
for empirical studies.

Phenotypicintegration is also of key importance when
considering the suggestion to combine morphometric
data from multiple structures (Catalano et al. 2015;
Perrard etal. 2016; Catalano and Torres 2017). Whether, or
to what extent, combining data from different structures
results in a dimensionality of the combined phenotypic
space that is higher than the dimensionality of the
phenotypic spaces of the individual structures depends
on the strength of integration among structures. The
possible outcomes are on a spectrum limited by two
extremes: complete integration, for which combining
different structures will not have any effect at all (the
phenotypicspace of each structure contains the complete
information about variation in any other structure),
or no integration at all, where the dimensionalities of
variation in the phenotypic spaces will add up to the
dimensionality of variation in the combined phenotypic
space. The scenario of no integration at all is grossly
unrealistic for actual morphological data, but how
closely actual data can approximate the limiting scenario
of complete integration is not clear. Although we are
not aware of any examples of complete evolutionary
integration, empirical studies show that associations
among different structures are widespread and often
strong (Gémez-Robles and Polly 2012; Hautier et al. 2012;

Claverie and Patek 2013; Alvarez et al. 2015; Martin-
Serra et al. 2015). Due to such evolutionary integration,
combining data from multiple structures in phylogenetic
analyses therefore is likely to provide only limited gains
of phylogenetic reliability.

Stabilizing Selection

When the evolutionary model used in the simulations
includes stabilizing selection, phylogenetic reliability
drops and, for most simulations, is little better than for
picking a tree at random (Fig. 5). For the simulations
with strong stabilizing selection, this applies regardless
of the dimensionality or branch length combinations
used (Fig. 5cf). In simulations with weak stabilizing
selection, a combination of high dimensionality and
a true phylogeny with a long internal branch and
short terminal branches yielded a limited zone of
better phylogenetic reliability (Fig. 5a,b). As soon as the
terminal branches surpass a minimum length, however,
even weak stabilizing selection is sufficient to eliminate
the phylogenetic signal. In some of the simulations under
the 2-versus-3-branch scenario with weak stabilizing
selection, there was even a special set of circumstances
where phylogenetic reliability was consistently worse
than picking trees at random: if simulations started
off the optimum and the set of three branches was
sufficiently short, only the two lineages of the two
long terminal branches tended to reach the optimal

phenotype, and the analyses systematically returned
the wrong tree (Fig. 5e). Overall, these simulations
indicate clearly that stabilizing selection can have a
severe detrimental effect on phylogenetic reliability.
The reason for this is that stabilizing selection attracts
every lineage to the optimum phenotype regardless of
ancestry, and thereby erodes the phylogenetic signal.
This general result is in agreement with findings from
different simulations (Revell et al. 2008).

Because we used a model of stabilizing selection with
a single adaptive peak, we need to ask whether using a
model with two or more peaks might lead to different
conclusions. The answer to this question depends on
the processes that control transitions from one peak to
another. It is possible to conceive of scenarios giving
rise to strong phylogenetic signal, for instance, if clades
are associated persistently with different adaptive peaks.
Because the taxa within each of these clades would be
under the same conditions as in a single-peak model,
however, phylogenetic resolution within clades would
also be poor. Alternatively, if switches between peaks
are so frequent that closely related taxa are commonly
associated with different peaks and remotely related
taxa with the same peak, convergence will be rampant
and phenotypic similarity will indicate association with
adaptive peaks, not phylogenetic relatedness.

Whereas evolution under a model of Brownian
motion, in principle at least, can continue without
bounds, models of stabilizing selection ensure that
phenotypes sooner or later converge toward the optimal
phenotype. If stabilizing selection is sufficiently strong
or the branches are sufficiently long, there is therefore no
longer an association between the time of separation and
the phenotypic distance between taxa. In other words,
the phenotype loses the phylogenetic signal it may have
had (see the upperright regions of the diagrams in
Fig. 5). This phenomenon is analogous to the problem
of substitution saturation in molecular data, when the
product of substitution rate and branch lengths is so
large that each position is expected to have undergone
multiple substitutions and therefore loses phylogenetic
information. This is different from the other models
used in this study, where no such phenomenon exists
and phenotypic differences are expected to increase
with time. In real organisms, however, there cannot
be an indefinite amount of change. Simulations of
Brownian motion can easily produce phenotypes that
are clearly nonfunctional (Polly 2004), so that it seems
best to view the models as restricted to a domain of
phenotype space within which phenotypes are viable.
If phenotypic variation extends to boundaries beyond
which phenotypes are not functionally viable, evolving
lineages are affected according to their phenotype and
regardless of their ancestry, as for stabilizing selection.
Therefore, the effect of such boundaries would probably
be detrimental to phylogenetic reliability.

Studies of quantitative phenotypes such as
morphological traits and gene expression have
found extensive evolutionary conservation (e.g.,
Rifkin et al. 2003; Estes and Arnold 2007; Hunt
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2007; Harmon et al. 2010; Kalinka et al. 2010; Gallego
Romero et al. 2012) and many comparative analyses
reported a good fit of Ornstein-Uhlenbeck models
to morphometric data (e.g., Angielczyk et al. 2011;
Monteiro and Nogueira 2011; Frédérich et al. 2013;
Kimmel et al. 2017; Aristide et al. 2018). These findings
support the view that stabilizing selection is widespread.
It is therefore likely that many studies attempting
to estimate phylogenies from multidimensional
phenotypes will face problems similar to those in our
simulations.

More Than Four Taxa

Because phylogenetic studies usually involve many
more than four taxa, the question arises whether and
how the results of our simulations extend to greater
numbers of taxa. Our simulations with more than
four taxa give some indications about this (Fig. 6).
First, there is a clear continuity from the results of
simulations with four taxa to those with more taxa.
Second, dimensionality and integration, two of the main
factors accounting for the results in simulations with four
taxa, can also explain the findings about trees with more
taxa in the same manner.

Phylogenetic reliability tends to drop with increasing
numbers of taxa. This reflects the fact that the number
of possible tree topologies rises sharply with increasing
number of taxa (Felsenstein 1978b, 2004). If random
variation plays any substantial role, an increasing
number of taxa means that one is picking at random
(to some extent, at least) from a much greater number
of trees, and consequently the chance of success drops.
For the model of isotropic Brownian motion, and
provided that internal branches are sufficiently long,
high dimensionality of the phenotype can alleviate
this effect (Fig. 6a). In the presence of integration,
however, this favorable effect does not extend beyond
approximately five dimensions (Fig. 6b). This is the
same limitation from phenotypic integration that we
discussed above for four taxa (Experiment 3). In the
current context, the consequence of integration is
that high-dimensional phenotypes provide no escape
from the trend of falling phylogenetic reliability with
increasing number of taxa.

With more than four taxa, it makes sense not just
to ask whether an estimated tree is the same as the
true phylogeny, but also to quantify how similar or
how different they are. The rationale of this is that,
even though the estimated trees might not match the
true phylogeny perfectly, they might be sufficiently
close to provide a reasonable approximation. Because
tree distances depend on the number of taxa, we
applied a correction by scaling distances in relation to
the expected distance between random trees with the
corresponding number of taxa—the scaled distances
therefore indicate how much closer estimated trees are
to the true phylogeny than randomly picking trees. After
this correction for the number of taxa, even though

FIGURE 7.  An example of convergence among internal nodes in a
phylogeny with 8 taxa. Taxa are numbered 1-8 and internal branches
i—v. The example was simulated under a Brownian motion model in a
two-dimensional phenotype space (the plane of the graph). Taxa 1 and
2 are phylogenetically as remote from taxa 7 and 8 as it is possible on an
8-taxon tree, yet the two pairs are phenotypically quite close. Similarly,
the sharp angle between branches iv and v brings taxa 7 and 8 very
near to taxon 5, clearly closer than any of them are to taxon 6.

the Robinson-Foulds distance and quartet distance are
known to differ in their properties (Steel and Penny
1993; Smith 2019a), they produced similar results in our
simulations (Fig. 6¢,d; Supplementary Fig. S1, available
on Dryad). The main findings from the analyses of
distances are consistent with the results on the four-
taxon case: higher ratios of internal to terminal branch
lengths produce estimated trees that tend to be closer to
the true trees, and so does increased dimensionality, but
phenotypic integration curtails the benefits of increased
dimensionality.

There is an additional result, however, which is not
just extending the findings from the simulations with
four taxa: when the branch length ratio is high and
when dimensionality is low or there is integration,
increasing the number of taxa yields a clear rise in
the relative tree distances (Fig. 6c,d; Supplementary
Fig. S1, available on Dryad). This suggests that, even
with long internal branches, an increasing number of
taxa poses an additional difficulty that is not present
with fewer taxa. The likely reason is that, with more
than four taxa, the internal branches of the tree can
“fold over” so that taxa that are separated by two
or more internal branches in the tree might end up
being relatively close to each other in phenotypic space
(Fig. 7). This effect depends on the dimensionality of the
phenotypic space, because convergence among internal
nodes is less likely when dimensionality is high. When
dimensionality is low or integration confines variation
to just a few dimensions of the phenotypic space,
increasing the number of taxa enhances the probability
of such convergence. Whereas, for just four taxa, a tree
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with an internal branch that is much longer than the
terminal branches consistently yields accurate estimates
of phylogeny under a Brownian motion model even
when dimensionality is low (Fig. 4), it is surprisingly
difficult, under the same conditions, to conceive a
similarly favorable scenario for greater numbers of taxa
because there is no way to avoid convergence among
internal nodes. As a consequence, in those conditions,
convergence among internal nodes is an extra source
of error for phylogenetic inference. Because a greater
number of taxa provides more opportunity for this
problem to occur, its effect rises with increasing number
of taxa (Fig. 6¢,d; Supplementary Fig. S1, available on
Dryad).

The majority of phylogenetic analyses include more
than eight taxa, raising the question how the results of
these simulations extend to greater numbers of taxa. The
trends over the range of four to eight taxa indicate that
the adverse effects of low dimensionality and phenotypic
integration apply to the simulations similarly or, for
the convergence among internal nodes, that increasing
numbers of taxa even exacerbate the difficulties in
estimating phylogenies (Fig. 6; Supplementary Fig. S1,
available on Dryad). Our simulations with more than
four taxa did not include stabilizing selection, but
there is no apparent reason why the attraction of
separate lineages to a common optimum would erode
phylogenetic signal any less for greater numbers of taxa
than it does for four taxa (Fig. 5).

CONCLUSIONS

The approach in this article differs from previous
studies in several ways and provides new insights. First,
we used simulations rather than empirical examples,
such as comparisons of phylogenetic trees estimated
from morphometric data and reference trees (e.g., Cole
et al. 2002; Lockwood et al. 2004; Klingenberg and
Gidaszewski 2010; Catalano and Torres 2017). For this
reason, there is certainty about the true phylogeny and
the model of the evolutionary processes. Second, our
simulations used simple trees, so that it was possible
for simulations to explore systematically factors such
as relative branch lengths and different evolutionary
models, rather than a smaller number of more complex
trees under a more restricted set of conditions (Perrard
et al. 2016; Parins-Fukuchi 2018b). Due to the small
number of taxa, there is no ambiguity in the results
whether estimated trees are correct or not, and the range
of models permitted us not only to determine whether
or not multidimensional phenotypic traits are reliable for
estimating phylogenies but also to understand why.

The simulations identified the following three
key factors: the dimensionality of the trait space,
phenotypic integration, and stabilizing selection. Under
Brownian motion, high dimensionality is crucial
for estimating phylogenetic trees reliably (Fig. 4).
Phenotypic integration is detrimental to phylogenetic
reliability because variation is limited to just a few of

the available dimensions (Fig. 4b,c). Integration is near
ubiquitous in morphological structures (Klingenberg
2008; Goswami et al. 2014), suggesting that it imposes
widespread limitations on phylogenetic reliability.
Because there is no quantitative survey of the strength
of evolutionary integration across a broad range of
taxa and traits, it is currently impossible to judge how
severe these limitations are. Stabilizing selection erodes
phylogenetic signal from phenotypic data, and therefore
is highly detrimental for estimating phylogenetic trees
(Fig. 5). It is a widespread phenomenon (Estes and
Arnold 2007), and therefore expected to have adverse
effects on phylogenetic analyses using phenotypic data
in many clades. Together, these factors conspire so
that phylogenetic inference from morphometric data,
or other high-dimensional phenotypic data in general,
must be expected to be unreliable.

We understand that these results are frustrating
to some investigators, particularly to paleontologists,
because morphometric data may be the only or at least
most easily available data for many fossil and even some
extant taxa (MacLeod 2002; Smith and Hendricks 2013;
Dehon etal. 2017; Parins-Fukuchi 2018a). Where possible,
other data such as genomic sequence information can
be used instead, which suffers from these difficulties to
a lesser extent and where vast amounts of information
are available (Rannala and Yang 2008). Even where such
alternatives are not available, however, we think it is
preferable to recognize the limitations of phylogenetic
inference from such data, rather than to use approaches
that may provide unreliable results.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https:/ /doi.org/10.5061 /dryad.sk244r4
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