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The methods of geometric morphometrics, which
combine an explicitly geometric definition of shape with
the flexible tools of multivariate statistics, have become
established in the past decade as the “morphometric
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synthesis” (Bookstein, 1996, 1998). Considerable effort
is now directed at applying these methods in diverse
biological contexts. Therefore, the morphometric meth-
ods need to be linked to the experimental protocols and
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statistical frameworks that underlie diverse applications
such as phylogenetic comparative analyses (Rohlf, 2001,
2002) or quantitative genetics (Klingenberg and Leamy,
2001; Monteiro et al., 2002). Morphometric analyses pro-
vide tools for answering specific questions that depend
on the context of each particular study. Statistical tests
and predictions of effects usually can make use of the
existing theory for the application, whereas the interpre-
tation and graphical display of effects are specific to ge-
ometric morphometrics.

Precisely how the morphometric methods should be
adapted to different biological contexts has provoked
vigorous debate. An issue that has attracted particular
attention is how to implement linear statistical models in
geometric morphometrics. Should the inferred effects of
experimental or observational factors on shape be con-
sidered exclusively in their absolute magnitude, using
the Procrustes metric that is at the core of geometric mor-
phometrics (e.g., Bookstein, 1996)? Or alternatively, is it
legitimate, depending on context, to consider the effects
considered relative to the observed variation as in stan-
dard multivariate analysis of variance and related statis-
tical procedures?

The controversy has focused on several specific is-
sues that are aspects of this question. Most recently, the
debate has been conducted on the Morphmet E-mail
list (February 2004; archive available at http://www.
mail-archive.com/morphmet@wfubmc.edu/) as well as
in a published exchange on quantitative genetics of shape
(Klingenberg, 2003b; Monteiro et al., 2003). One posi-
tion is that some of the standard analyses of multi-
variate statistics are inherently incompatible with mor-
phometrics. For example, Bookstein (1991: 114) stated
“Discriminant-function analysis is not a morphometric
technique . . . ,” and added “Neither is the extension to
multiple groups, canonical-variates analysis.” This posi-
tion is controversial because canonical variate analysis is
one of the most frequently used techniques in morpho-
metrics (e.g., Rohlf et al., 1996; Duarte et al., 2000; Corti
and Rohlf, 2001; Douglas et al., 2001; Rüber and Adams,
2001; Dobigny et al., 2002; Cardini, 2003; Debat et al.,
2003; Harvati, 2003; Klingenberg et al., 2003a).

Here we provide a general discussion of the problem,
and we apply these considerations in two different exam-
ples of biological applications. In the first example, we
extend and clarify an earlier debate about the applica-
tion of geometric morphometrics to quantitative genet-
ics (Klingenberg and Leamy, 2001; Monteiro et al., 2002;
Klingenberg, 2003b; Monteiro et al., 2003). In the second
example, we use the logic of transformed shape spaces
in a different context to define a new measure of individ-
ual asymmetry of shape as an alternative to those sug-
gested by Klingenberg and McIntyre (1998) and Palmer
and Strobeck (2003).

SHAPE VARIATION

Shape is defined mathematically as all the geometric
information about an object except for its size, position,
and orientation or, in other words, all those properties
that are invariant to scaling, translation, and rotation

(e.g., Bookstein, 1991: 126, 180; Dryden and Mardia, 1998:
1). This definition is used throughout geometric morpho-
metrics and is applicable both to configurations of land-
marks and to outline contours of objects. Because mul-
tiple geometric features are required to characterize the
shape even of very simple figures, shape is an inherently
multidimensional phenotype.

The shapes of landmark configurations can be rep-
resented as points in a shape tangent space (e.g.,
Dryden and Mardia, 1998; Rohlf, 1999), within which
the methods of multivariate statistics can be used. Dif-
ferences between pairs of shapes or deviations of indi-
vidual shapes from the population average can be char-
acterized by their magnitude, measured as a Procrustes
distance, and their direction in the tangent space. As
long as the complete information about shape is en-
tered in the analysis, it does not matter whether the
shape variables used are the complete set of partial warp
scores and uniform components or the coordinates of
Procrustes-aligned landmarks projected onto the tangent
space. Both these sets of variables describe the same
variation, and one can be transformed into the other
by a rotation of the coordinate system (e.g., Rohlf, 1999:
214).

A key characteristic of geometric morphometrics is
that points in the shape tangent space can be related
back to actual shapes in the original plane or three-
dimensional space of the landmark coordinates. Like-
wise, vectors in the shape tangent space correspond to
shape changes. This relationship between the shape tan-
gent space and the physical space in which the config-
urations were digitized makes it possible to visualize
directly the results of statistical analyses. Maintaining
these relationships imposes some restrictions on the
mathematical operations that can be used in morpho-
metrics, because some transformations destroy the spe-
cial properties of shape tangent space and the direct link
to the original landmark configurations.

A substantial body of mathematical theory has been
developed for the special case when shape variation is
isotropic, that is, when each landmark is equally vari-
able, the variation at each landmark is the same in all
directions, and variation is independent among land-
marks (e.g., Goodall, 1991; Dryden and Mardia, 1998).
This means that the scatter of landmark positions around
the sample average is circular, with the same spread
at each landmark. Although this model is convenient
because it greatly simplifies the statistical analysis of
shape variation, isotropic variation is rarely found in
biological data sets. To the contrary, landmarks usually
differ in their amounts of variation, they show a clear
directionality of variation, and usually there exist asso-
ciations between the landmarks. These deviations from
the isotropic condition are often the very subject of in-
terest, for instance, in studies of morphological inte-
gration (Klingenberg and McIntyre, 1998; Badyaev and
Foresman, 2000; Debat et al., 2000; Klingenberg and
Zaklan, 2000; Klingenberg et al., 2001a, 2003b, 2004;
Bookstein et al., 2003). Accordingly, it is important to take
into account the nonisotropic nature of shape variation.
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To adjust for this, many of the standard methods of mul-
tivariate statistics use transformations of the data space.

The Procrustes approach has been criticized because it
can produce estimates that are statistically inconsistent if
variation is not isotropic (Lele, 1993; a critique repeated
by Lele and Richtsmeier, 2001: 94). Kent and Mardia
(1997) confirmed that statistical inconsistency can occur
if the ratio of signal to noise goes toward zero (i.e., if
the error distribution is large relative to the dispersion of
the landmark positions in the mean form). They pointed
out, however, that this problem does not apply if the
data are tightly clustered around the mean shape (Kent
and Mardia, 1997: 286), as is the case in the vast major-
ity of biological examples, particularly in studies at the
intraspecific level or in comparisons among closely re-
lated species. Similarly, Dryden and Mardia (1998: 287)
emphasize that for small amounts of shape variation,
the Procrustes methods and distance-based alternatives
such as EDMA (championed by Lele and Richtsmeier,
2001) will produce shape coordinates that are effectively
linear transformations of each other. After a transforma-
tion of those spaces as we discuss them in this paper, the
different approaches will therefore produce virtually
the same statistical results, and will differ primarily in
the form of presentation. Dryden and Mardia (1998: 287)
further suggest a rule of thumb that if the full Pro-
crustes distances between the average shape and all the
specimens are less than about 0.2, all methods yield
very similar results. This is a far greater amount of
shape variation than is usually found in morphometric
data sets.

TRANSFORMATIONS OF MULTIVARIATE SPACES

Imagine a data set consisting of three groups arranged
in a two-dimensional space (a plane, which might be
the shape tangent space for a triangle of landmarks) so
that the points corresponding to the three group means
form an equilateral triangle (Fig. 1A). By definition, these
three groups are at equal distances from each other. De-
spite the equal distances between means, however, the
three groups in Figure 1A are not equally distinct from
each other because the variation within groups is not
isotropic. Groups 1 and 2, for which the mean differ-
ence is nearly aligned with the axis of greatest within-
group variation, are almost overlapping. In contrast,
group 3 is clearly separate from either one of the oth-
ers, as the mean differences are roughly perpendicular
to the axis of greatest within-group variation. This ex-
ample shows that the distinctness of groups depends not
only on the distance between group means, but also on
the direction of the mean difference relative to the di-
rectionality of variation within groups. In contrast, if the
variation within groups is isotropic, the degree of sep-
aration depends only on the distances between means
(Fig. 1B).

If variation is nonisotropic, the task of discriminating
between groups can be simplified by scaling the mul-
tidimensional space by the inverse of the within-group
variation, which is equivalent to transforming the whole

FIGURE 1. Group discrimination and distances. A, Example of three
groups with nonisotropic variation. Even though the Euclidean dis-
tances between all three group means are equal (the three means form
an equilateral triangle), the separation between groups 1 and 2 is less
clear than between either one of these and group 3. B, Example of three
groups with isotropic variation. All groups are equally separate from
each other. C, The example of panel A with the space transformed
so that within-group variation becomes isotropic. The distances are
transformed from Euclidean to Mahalanobis distances. The three group
means no longer form an equilateral triangle.

multivariate space by rotating, stretching, compressing,
and shearing so that variation within groups becomes
isotropic. Figure 1C shows this transformed space for
the situation in Figure 1A and clearly demonstrates that
the transformation has a profound effect on the distances
between groups. The distances in the transformed space
measure the differences between groups relative to the
within-group variation, and are known in multivariate
statistics as the Mahalanobis distances (e.g., Mardia et al.,
1979). These distances directly reflect the degree of sep-
aration between groups, and the direction of variation
within groups needs not be considered in this space be-
cause it is isotropic by definition.

This transformation is a central idea for computing
discriminant functions and for canonical variate anal-
ysis (e.g., Albrecht, 1980; Campbell and Atchley, 1981;
Carroll et al., 1997). The discriminant function between
two groups is computed as W−1d, where d is the dif-
ference vector between the two group means and W−1

is the inverse of the within-group covariance matrix W.
The discriminant functions therefore correspond to the
lines connecting pairs of group means in Figure 1C, and
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discriminant scores are computed by orthogonal projec-
tion of the data points onto those lines. Similarly, canon-
ical variate analysis is based on a transformation of the
among-group covariance matrix B by premultiplying
with W−1, followed by a principal component analysis of
the matrix W−1B (Albrecht, 1980; Campbell and Atchley,
1981). The resulting canonical variates are those variables
that account for the maximum amount of among-groups
difference relative to the within-group variation. Due to
the transformation by W−1, the resulting canonical or dis-
criminant space is different from the space of the original
variables to the degree that W differs from being propor-
tional to an identity matrix. The transformation is more
drastic if the variances of the variables greatly differ from
each other or if the variables are highly correlated with
each other.

Unless the within-group variation of shape is isotropic
(i.e., W is proportional to an identity matrix), the process
of the transformation by W−1 will cause some combina-
tion of stretching, rotation, and shearing of the multivari-
ate space and thereby alter its geometry so that it does not
retain the characteristics of a shape tangent space. Shape
tangent spaces have special properties that link their ge-
ometry to that of the plane or three-dimensional space
in which the landmark configuration has been digitized
and in which shapes can be reconstructed graphically
(Rohlf, 1999). First, directions that are perpendicular in
the original configuration correspond to perpendicular
directions in shape tangent space. Second, all the axes
within each space are scaled equally. Therefore, any two
landmark shifts in configuration space that are equal in
magnitude, but which may differ in their direction or oc-
cur at different landmarks, will produce shifts of equal
magnitude in shape tangent space (for small amounts of
shape variation). These two properties are the basis for
using Procrustes distances as a metric for shape changes
and they ensure that each point in shape tangent space
can be visualized directly as a shape.

Stretching and shearing by the transformation with
the matrix W−1 can destroy these properties. The trans-
formation may apply a different scaling factor for each
landmark and even for different directions of variation
for a single landmark. Moreover, directions that were
orthogonal in the original configuration may no longer
correspond to orthogonal directions in the transformed
shape tangent space. Figure 2 shows an example of
this change in a typical example of the type of vari-
ation as it is found in many morphometric data sets,
shape variation in the Drosophila wing. Variation clearly
is not isotropic, because the scatters are neither equally
large nor circular (Fig. 2A; in addition, variation at dif-
ferent landmarks is interrelated, which cannot be seen
in this diagram). A pair of x and y coordinate axes is
shown at each landmark, and the axes have consistent
directions and scaling for all landmarks (Fig. 2A). The
transformation by W−1 has different effects on differ-
ent landmarks, as can be seen from the changes to the
coordinate axes drawn at the landmarks, which differ
in their directions and lengths (Fig. 2B). Because there

FIGURE 2. Shape variation in the Drosophila melanogaster wing
and the transformation by P−1. A, The patterns of landmark variation
in the wing. The ellipses showing the dispersion of landmarks around
the Procrustes average have all been magnified by the same factor for
better visibility. Note that the landmarks differ in the amount and di-
rection of variation. The x and y axes are drawn at each landmark.
B, The effects of the transformation by the matrix P−1 on the coordi-
nate axes for the different landmarks. The coordinate axes from panel
A are here shown after the transformation. Notice the unequal scaling
and shearing of axes for some of the landmarks. All axes are scaled by
the same factor, but they have been superimposed arbitrarily on the
locations of the corresponding landmarks in the original configuration
(in the transformed space, there is no overall scale for the x and y axes
as there is in the configuration space). The landmark locations and the
transformed axes are not even in the same units (see text). We empha-
size, therefore, that this diagram is meant to illustrate the difficulties
of presenting the transformed space, but definitely not as a suggested
solution!

is no consistent scaling of the coordinates in the trans-
formed space, we chose to construct Figure 2B with the
landmark arrangement of the mean shape (this choice is
arbitrary, even though it may look deceptively natural).
Moreover, the transformed coordinates are in units of
the inverse of shape (another reason why the combina-
tion with the original landmark configuration in Fig. 2B
is problematic). The Procrustes metric and other features
of shape tangent space clearly do not apply here and,
other than by undoing the transformation altogether,
there is therefore no direct or natural relationship from
the transformed shape tangent space back to the original
configuration.

Transformations of this sort play an important role in
applications of morphometric methods to a wide range
of different biological problems. In this paper, we will
concentrate on two contrasting applications: quantitative
genetics, including the analysis of selection on shape, and
the measurement of fluctuating asymmetry in shape.
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GEOMETRIC MORPHOMETRICS AND THE MULTIVARIATE
THEORY OF QUANTITATIVE GENETICS

A context in which this sort of transformation plays
a central role is quantitative genetics, clearly a critical
area for understanding the micro- and macroevolution of
organismal shape (Felsenstein, 1988, 2002; Steppan et al.,
2002). So far, most quantitative genetic studies of shape
are univariate analyses of single shape variables derived
from landmark or outline analyses, which either use
classical quantitative genetic approaches (e.g., Arnqvist
and Thornhill, 1998; Currie et al., 2000; Albertson et al.,
2003b) or searches for quantitative trait loci (QTLs; e.g.,
Liu et al., 1996; Zimmerman et al., 2000; Albertson et al.,
2003a). These analyses are restricted a priori to investi-
gate a single aspect of shape in isolation, and they cannot
consider how different shape features may be related to
each other. In contrast, studies of the quantitative genet-
ics of shape as a whole, rather than single shape variables,
require an explicitly multivariate approach. Such meth-
ods have been introduced for QTL analyses (Klingenberg
et al., 2001b, 2004; Workman et al., 2002) as well as for
classical quantitative genetic approaches (Klingenberg
and Leamy, 2001; Monteiro et al., 2002; Fernández Iriarte
et al., 2003), but the latter applications have generated
some debate (Klingenberg, 2003b; Monteiro et al., 2003).

Klingenberg and Leamy (2001) combined the methods
of geometric morphometrics with the standard multi-
variate theory of quantitative genetics (e.g., Lande, 1979;
Cheverud, 1984; Roff, 1997; Lynch and Walsh, 1998). In
contrast, Monteiro et al. (2002) used Procrustes distance
to define a new scalar measure of heritability for shape,
which is the ratio of the amount of genetic shape varia-
tion to the total amount of shape variation. Klingenberg
(2003b) presented additional algebraic explanations of
this method, linking it explicitly to the multivariate the-
ory of quantitative genetics, and pointed out some lim-
itations of the scalar heritability measure. In their reply,
Monteiro et al. (2003) raised questions about the sets of
variables used to characterize shape, and suggested that
the direction and magnitude of shape variation can be
treated as separate questions. We will revisit this sug-
gestion here.

Genetic and phenotypic components of variation can
be extracted using the standard statistical tools of quanti-
tative genetics (Lynch and Walsh, 1998), for instance the
parent-offspring design (Klingenberg and Leamy, 2001)
or other types of analyses of variation within and be-
tween groups of closely related individuals (Monteiro
et al., 2002; Fernández Iriarte et al., 2003). These analy-
ses yield estimates of the phenotypic covariance matrix
P and the genetic covariance matrix G, which are used
in the further analyses. For genetic analyses of shape,
the P and G matrices characterize the entire genetic and
phenotypic shape variation, including magnitude and
directionality in all the dimensions of the shape tangent
space.

The G and P matrices can be used to predict the com-
plete selection response, both magnitude and direction,
with the multivariate version of the breeders’ equation

�µ = GP−1s (Lande, 1979). In this equation, �µ is the
response to selection, the change in mean shape between
the parental and offspring generations, and s is the selec-
tion differential, the difference between the mean shape
in the parental generation and the mean shape of the in-
dividuals selected to produce the offspring generation
(or the covariance between shape and fitness). Both �µ
and s are vectors in the shape tangent space, and as long
as the complete shape information is included in the G
and P matrices, the analyses do not impose any artificial
restrictions on the results. Figure 3 provides a simple ex-
ample of this kind of analysis for two dimensions (the
shape tangent space for a triangle of landmarks), show-
ing that the direction of s and �µ may not be the same
and that the magnitude of �µ also depends on the spe-
cific s used (Fig. 3B, C).

The geometric reasoning that underlies the multivari-
ate theory of quantitative genetics is similar to the trans-
formations explained above for discriminant analysis.
The multivariate breeders’ equation, �µ = GP−1s, can
be viewed as consisting of two sequential transforma-
tion steps, in which the original selection differential s is
changed into the response to selection �µ (Lande, 1979).
In the first transformation, the selection differential is
premultiplied by the inverse of the phenotypic covari-
ance matrix, which transforms it into the selection gra-
dient, β = P−1s. The transformation by P−1 yields a new
trait space in which the phenotypic variation is isotropic,
eliminating the effects of phenotypic covariation, and
therefore the selection gradient reflects the direct effects
of selection on the traits. The selection gradient is a vector
of partial regression coefficients of relative fitness on the
phenotypic variables (Lande and Arnold, 1983; Phillips
and Arnold, 1989). The second transformation, this one
using the G matrix, relates the within-generation effects
of selection to the response in the following generation,
�µ = Gβ. In a way, the transformation by G is the re-
verse of the transformation by P−1, as it projects the vec-
tor of selection effects from the space of partial effects
back to the original shape tangent space, but it uses the
additive genetic covariance matrix because this mapping
is from the parental to the offspring generation. In the
juxtaposition of both these transformation steps as parts
of the multivariate breeders’ equation, both the pheno-
typic and genetic covariance structures play a role, and
together they can produce results that may appear coun-
terintuitive at first (e.g., Fig. 3).

Magnitude and Direction: Are They Really Separable?

A key point emphasized by Monteiro et al. (2003) is
that the magnitude and direction of shape change are
questions that can be treated separately. Accordingly, it
should be possible to use the univariate breeders’ equa-
tion with the shape heritability h2 to predict the magni-
tude of the selection response from the magnitude of the
selection differential (Monteiro et al., 2002: 569), or us-
ing the notation above, ||�µ|| = h2||s|| , where the dou-
ble bars denote the length of the respective vector. The
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FIGURE 3. Simulation of selection in different directions in two dimensions (e.g., the tangent space for shape variation in a triangle of
landmarks). A, Contours illustrating the magnitude and directionality of variation in the additive genetic covariance matrix G (black ellipse)
and the phenotypic covariance matrix P(gray ellipse) used in this example. B, C, Selection with two different selection differentials. In each
panel, s is the selection differential (gray arrow) and �µ is the response to selection. D, Polar plots of the predicted magnitude of the selection
response as a function of the direction of the selection differential (the magnitude of the selection response, graphed in the direction of the
selection differential). The black figure shows the magnitude of the response ||� µ|| predicted by the multivariate breeders’ equation (Lande,
1979), which considers both the amount and direction of variation jointly. The gray circle indicates the magnitude h2||s|| predicted using the
univariate breeders’ equation and the shape heritability h2 according to Monteiro et al. (2002). The arrows labeled B and C indicate the points
corresponding to the examples shown in panels B and C. Note that the coordinate system in the polar plot of panel D is not the same as in panels
A to C, which represent the shape tangent space.

shape heritability of Monteiro et al. (2002) can be com-
puted as the total variance of G divided by the total
variance of P (the sum of the diagonal elements of G
divided by the sum of the diagonal elements of P). This
approach differs from the one outlined in the previous
section in that it does not consider the direction of the se-
lection differential and the directionality of variation in G
and P.

To illustrate the differences between the two ap-
proaches, we present a simple simulation in two di-
mensions, which might be the shape tangent space for
a triangle of landmarks. The simulation used the follow-
ing G and P matrices (in arbitrary units; Fig. 3A):

G =
[

3 1.2
1.2 2

]
and P =

[
6 4
4 5

]
·

The shape heritability (Monteiro et al., 2002) can
therefore be calculated as the ratio of the total vari-
ances of the G and P matrices, h2 = 5/11 = 0.45. Using
this estimate and the univariate breeders’ equation, the
predicted magnitude of the selection response would
therefore be 0.45 times the magnitude of the selection dif-
ferential, regardless of the direction of selection (Monteiro
et al., 2002: 569).

The simulations with the multivariate breeders’ equa-
tion are shown for two selection differentials, both of
the same length, but with different directions (Fig. 3B, C,
gray arrows labeled s). Both the directions and the mag-
nitudes of the responses to selection differ between the
two simulations (black arrows labeled �µ). We repeated
this simulation for selection in all possible directions, and
we graphed the magnitudes of the predicted responses
against the direction of the selection differential as polar
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plots (Fig. 3D). Because the same magnitude of response
is expected for the shape heritability approach, the result-
ing plot is a circle (gray circle labeled h2||s||). In contrast,
the polar plot for the magnitude of the response pre-
dicted by the multivariate breeders’ equation is a more
irregular shape somewhat resembling a peanut (black
figure labeled ||�µ||), which indicates that the magni-
tude of the selection response changes markedly accord-
ing to the direction of the selection differential. As can
easily be seen, the two estimates of the magnitude of
selection response differ substantially.

This simulation also shows that the estimate based on
shape heritability need not even provide a good estimate
for the average of the selection response computed with
the multivariate breeders’ equation. For most directions
of the selection differential, the estimate based on shape
heritability substantially underestimates the magnitude
of the response (Fig. 3D). Considering the direction of
selection is therefore essential for predicting the magni-
tude of the response. This example shows that magnitude
and direction are not separate questions, but are tightly
interlinked and should be considered jointly in quanti-
tative genetic studies of shape. We conclude that careful
attention should be paid to the stringent assumptions
implicit in the shape heritability of Monteiro et al. (2002)
and that it should be used only if variation is isotropic
or if the P and G matrices are proportional (Klingenberg,
2003b). We would like to remind readers that a signifi-
cant matrix correlation between the P and G matrix, as
it can be obtained by a matrix permutation test (Mantel
test, e.g., Mantel, 1967; Cheverud et al., 1989; Klingen-
berg and McIntyre, 1998) does not necessarily indicate
proportionality. If the P and G matrices are proportional,
then the matrix GP−1 will be a scalar multiple of the iden-
tity matrix (all off-diagonal entries zero and all diagonal
entries equal). This is a better criterion to assess whether
the G and P matrices are sufficiently proportional for the
use of the scalar shape heritability.

Interpreting and Visualizing Multivariate
Selection on Shape

The two alternative descriptors of linear selection, s
and β, differ in a number of ways that are consequences
of the transformation of s by P−1. The selection differen-
tial s is the vector of covariances between fitness and the
shape variables, or the difference of phenotypic means
in the parental generation before and after selection (e.g.,
Lande and Arnold, 1983; Falconer and Mackay, 1996:
chapter 11). The selection differential also corresponds to
the shape variable that can be extracted by a partial least
squares analysis (Rohlf and Corti, 2000) of the covari-
ation between shape and fitness. Overall, the selection
differential is a descriptor of the total effect of selection,
but it does not distinguish between direct and indirect se-
lection and does therefore not provide information about
the agency of selection.

If the causal basis of selection on shape is of interest,
the selection gradient β may be the appropriate descrip-
tor, because it is the vector of the multiple regression

coefficients of fitness on shape. For each shape variable,
this estimate partials out the effect of all other aspects of
shape on fitness. It therefore represents the direct effect
of each variable on fitness separately, and corrects for
indirect selection.

In the context of geometric morphometrics, however,
these interpretive advantages come at a cost, because
they eliminate the possibility for direct visualization. The
selection differential is a shape change, but the selection
gradient is not (it is in units of the inverse of shape).
The selection differential can be calculated directly as the
difference in mean shape before and after selection (for
threshold selection; Falconer and Mackay, 1996: chap-
ter 11) or as the covariance of shape with relative fit-
ness, which is dimensionless (Lande and Arnold, 1983).
Selection differentials therefore are vectors in shape
tangent space and can be visualized directly with the
graphical tools customary in geometric morphometrics
(Klingenberg and Leamy, 2001). The transformation of
s to the selection gradient β by the matrix P−1 changes
its nature, so that it is no longer a vector in shape tan-
gent space. All the problems of interpretation outlined
above therefore apply to the selection gradient with full
severity.

In particular, selection gradients should not be visual-
ized as shape changes (like the coordinate axes in Fig. 2B),
tempting and apparently intuitive as this may appear at
first sight. Instead, the method for visualizing the shape
features associated with selection should follow the pro-
cedure used, for example, for canonical variate analysis
(Rohlf et al., 1996: 354). The method consists of a mul-
tivariate regression of the shape variables (Procrustes
residuals or partial warp scores and uniform compo-
nents) on the canonical variate scores, which yields the
expected shapes of specimens with low and high canon-
ical variate scores. In the context of natural selection, the
analogue of this approach is to visualize the expected
shapes of individuals with high or low fitness. The pro-
cedure is to compute a predicted fitness score for each
individual by multiplying its shape variables by the se-
lection gradient β. The multivariate regression of shape
on this fitness score yields a vector of regression coeffi-
cients that can be visualized directly. This vector is di-
rectly proportional to the selection differential s, with a
scaling factor equal to the reciprocal of the variance of the
fitness score (in essence, the multivariate regression has
undone the transformation from s to β). An equivalent
solution, with a resulting shape variable that is a scaled
version of s, can be obtained from a partial least squares
analysis of shape and fitness (Rohlf and Corti, 2000). To
put it simply, the rule in geometric morphometric studies
of selection on shape is to display selection differentials
and not selection gradients.

A MODIFIED SHAPE DISTANCE FOR NON-ISOTROPIC
VARIATION

The ideas about transformed spaces are applicable not
only in quantitative genetics. Here we use them in a con-
trasting biological context to formulate a modified shape
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distance that quantifies the magnitude of shape differ-
ences relative to the variation in a sample.

An application of this shape distance is fluctuating
asymmetry, which is thought to originate from random
perturbations in development (Palmer and Strobeck,
1986; Møller and Swaddle, 1997; Klingenberg, 2003a).
Because it is of random origin, an individual’s devia-
tion from symmetry could have any direction, which is
often of little biological interest. The magnitude of the
deviation, however, is modulated by the developmen-
tal system, which in turn may respond to factors such
as environmental stress or the genotype (Palmer and
Strobeck, 1986; Møller and Swaddle, 1997; Klingenberg
and Nijhout, 1999). To investigate these effects, the mag-
nitude of asymmetry is a sufficient measure of individual
asymmetry, whereas the direction of individual asymme-
try is normally not of interest.

For studies of fluctuating asymmetry and other sit-
uations where the direction of the effects in particular
individuals is of no biological interest, we propose a dis-
tance measure that can provide a scalar measure of the
relative extent of shape differences, while taking into ac-
count that variation may not be isotropic. This distance
measure is based on the idea of one-sample standard
distance (Flury and Riedwyl, 1986; Flury, 1997), which is
equivalent to the one-sample version of the Mahalanobis
distance (Mardia et al., 1979: 31). Note, however, that the
full shape change cannot be reconstructed from such a
distance measure alone and that no visualization as a
shape change is therefore possible.

The computation of this distance involves a transfor-
mation of the original space (Fig. 4A) to a space in which
the variation is isotropic (Fig. 4B). The distances are
then computed as Euclidean distances in the transformed
space and can be compared without reference to the di-
rections of the original deviations (Fig. 4C). The trans-
formation step changes the geometry of the space, both
in terms of directions and distances (arrows in Fig. 4),
but it maintains the magnitude of each individual devi-
ation relative to the amount of sample variation in that
direction. Because the variation after transformation is
the same in every direction, the information about di-
rections then can be dropped and the distances can be
directly compared (Fig. 4C).

There are several methods for the computation of the
shape deviations from the mean. In compact matrix no-
tation, we can start with an n × p matrix X that contains
the data, for example, the signed shape asymmetries,
centered so that all the column means are zero (n is the
sample size and p is the number of variables in X). Then
the covariance matrix can be computed as S = 1/n XTX,
where the superscript T denotes the matrix transpose.
The shape distances of each specimen to the mean are
then found by taking the square roots of the values on
the diagonal of the matrix XS−XT, where S– is the gen-
eralized inverse of S.

An equivalent calculation of these distances can be
done easily with standard statistics software using the
following procedure: (1) carry out a principal compo-

FIGURE 4. A modified distance measure for shape deviations, for
instance fluctuating asymmetry, in the presence of nonisotropic varia-
tion. A, Original distribution of shape deviations around their average.
Three individual cases, drawn haphazardly from the distribution, are
shown as numbered arrows. B, After transformation by the inverse of
the covariance matrix, the variation around the mean is isotropic and
the scatter of data points is transformed from an ellipse into a circle.
After the transformations, the directions and lengths of the deviations
have changed, but each one has maintained its magnitude relative to
the variation in its particular direction. C, The distance from the mean
as a relative measure of shape distance. Because variation is isotropic af-
ter transformation, the relative magnitudes can be compared directly
among shape differences with different directions (gray circles). The
distances in the transformed space can therefore be used as a relative
measure of shape difference.

nent analysis (using the covariance matrix) of the data,
for instance the signed right-left differences of land-
mark positions, and compute the principal component
scores for each observation; (2) standardize the scores
for each principal component to variance 1.0; (3) sum
up the squares of these standardized principal compo-
nent scores for every observation; and (4) compute the
square root of the resulting sum for each observation.
If the analysis is based on partial warps scores and the
uniform components of shape variation, all the vari-
ables should be included in this procedure, but if the
coordinates of Procrustes-superimposed landmarks or
Procrustes residuals are used, the last four (for two-
dimensional data) or seven (for three-dimensional data)
principal components should be omitted from steps
(2) to (4) because they have zero variances (up to round-
ing errors).

The procedure described above can be used with
data that are the signed right-left differences of shape
(Klingenberg and McIntyre, 1998; Auffray et al., 1999;
Klingenberg et al., 2002). Computing the principal com-
ponents of individual asymmetry vectors from centered
data, the default option in most statistics programs,
automatically provides a correction for directional
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asymmetry, which is almost ubiquitous for shape data
(Smith et al., 1997; Klingenberg et al., 1998).

The resulting asymmetry measure takes into ac-
count that fluctuating asymmetry is usually nonisotropic
(Klingenberg and McIntyre, 1998; Debat et al., 2000;
Klingenberg and Zaklan, 2000; Klingenberg et al., 2002),
and it is therefore preferable over the individual asym-
metry measures based on Procrustes distance (Smith
et al., 1997; Klingenberg and McIntyre, 1998). Moreover,
because this measure is scalar, and therefore is amenable
to univariate statistical analyses, it is considerably sim-
pler than the vector-valued measure of unsigned asym-
metry used by Klingenberg et al. (2001b).

We demonstrate this measure of shape distance with
an example of fluctuating asymmetry in samples of
Drosophila melanogaster males from the Oregon-R wild-
type strain (n = 98) and from a strain heterozygous for
the spalt-major1 mutation (salm1; n = 108). The data set
includes the coordinates of 15 landmarks (see Fig. 2)
on each wing. The landmark configurations for the left
wings were reflected, and the shape information for
all wings was extracted by Procrustes superimposition.
Signed asymmetries were computed as the coordinate
differences of the left and right wings of each individual.
Preliminary analyses suggested that measurement error
was small relative to fluctuating asymmetry.

The variation among the eigenvalues of the covariance
matrix of the signed asymmetry clearly indicates that the
variation is not isotropic (Fig. 5A). Much of the variation
is concentrated in the first few principal components,
and the eigenvalues drop markedly before tapering off
to small values. The last four eigenvalues are zero be-
cause of the four degrees of freedom lost in the Procrustes
superimposition for variation in size, position, and ori-
entation. For comparison, we also show the eigenvalues
for a simulated data set with isotropic variation and the
same sample size (gray line in Fig. 5A). This simulation
shows a much more even distribution of the variation
over the 26 dimensions.

The plot of the first two principal component scores
of the signed asymmetries shows no evident difference
in the scatter between the wild-type and mutant flies
(Fig. 5B). Also note that the clear anisotropy of the data is
not very apparent from this plot, which is a reminder that
a nearly circular scatter of principal component scores
does not imply isotropic variation.

To compare the degree of asymmetry between the two
samples, we computed a score for the asymmetry of
wing shape for each fly, using the modified shape dis-
tance. The histograms of the asymmetry scores (Fig. 5C)
show only a slight difference between the two samples,
with the scores for fluctuating asymmetry being slightly
higher in the wild-type flies than in the salm1 mutant flies.
The difference of the means of 0.56 is statistically signif-
icant (P = 0.0003 in a two-tailed permutation test with
10,000 random permutations). This example shows that
this measure of asymmetry can pick out relatively sub-
tle differences in the amounts of asymmetry. This will be
particularly useful in contexts such as studies of quanti-
tative genetics, where subtle effects are often found. This

FIGURE 5. Application of the measure of relative shape distance
to fluctuating asymmetry of Drosophila wings. (A) Eigenvalues of the
covariance matrix for fluctuating asymmetry (black histogram) in com-
parison to a simulated data set drawn from an isotropic distribution
(gray histogram). (B) Scatter plot of the scores for the first two principal
components for asymmetry. Crosses indicate individuals with salm1/+
genotype and circles represent wild-type individuals. (C) Histograms
of the asymmetry scores. Scores were computed using the measure of
relative shape distance.

scalar measure of shape distance has been applied in a
study of the genetic architecture of fluctuating asymme-
try in mice (Leamy et al., 2005).

The use of this distance measure for individual
asymmetry is made possible by the random origin of
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fluctuating asymmetry. This situation is quite different
from that in most other applications of geometric mor-
phometrics. For instance, in quantitative genetics of
shape, the directionality does matter because genes con-
tribute to an individual’s deviation from the population
average by some amount in a particular direction. This
directionality is shared by individuals carrying the same
alleles at a locus, and this shared directionality is respon-
sible for the correlation of phenotypic traits among rel-
atives (Fisher, 1918; Falconer and Mackay, 1996; Lynch
and Walsh, 1998). Likewise, in phylogenetic comparative
analyses, the deviations are inherited from ancestors to
descendants, and the directionality of the deviation from
the overall mean therefore tends to be shared among re-
lated taxa (Felsenstein, 1988, 2002). In both these exam-
ples, it is this shared directionality that causes related
individuals or taxa to resemble each other in their mor-
phological features and not just in the amount of differ-
ence from the overall average size and shape.

CONCLUSIONS

This paper has highlighted the importance of taking
nonisotropic variation into account in geometric mor-
phometrics. For instance, in phylogenetic comparative
studies of shape (Rohlf, 2002), the anisotropic nature of
shape variation is often the very target of morphomet-
ric studies that identify the shape features evolving the
most or the least to characterize evolutionary trends or
stasis and constraints. Likewise, in studies of morpho-
logical integration, the focus of interest is the covariation
among landmarks (e.g., Badyaev and Foresman, 2000;
Klingenberg and Zaklan, 2000).

Here we have particularly stressed the example of
quantitative genetic analyses of shape, where the direc-
tion of selection will have an effect on both the magnitude
and direction of the selection response unless the G and
P matrices are proportional (Klingenberg, 2003b), and di-
rection and magnitude of changes cannot be treated as
separate questions. Because of nonisotropic variation the
transformation from the selection differential to the se-
lection gradient distorts the geometry of the multivariate
space so that it no longer has the properties of a shape
tangent space. As a consequence, the selection gradient
is not a shape change and therefore cannot be visual-
ized directly. Instead, graphs of the selection differential
(showing the shapes corresponding to high or low fit-
ness) should be used to visualize selection.

We also have outlined a contrasting application, for
fluctuating asymmetry of shape, where the direction
of shape deviations is not of biological interest. This is
because the perturbations that cause fluctuating asym-
metry are of random origin. The benefit of ignoring the
direction is that a scalar measure of the amount of shape
asymmetry can be derived, which can be further studied
with univariate methods and therefore simplifies the
analyses.

Both these applications use, in very different ways, the
same framework of transformations of shape spaces and
the relationships between Procrustes distance and Maha-
lanobis distance. This framework is by no means limited
to these specific cases, but should be equally applicable

to a broad range of morphometric analyses in different
biological contexts.
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Fernández Iriarte, P., W. Céspedes, and M. Santos. 2003. Quantitative-
genetic analysis of wing form and bilateral asymmetry in isochro-
mosomal lines of Drosophila subobscura using Procrustes methods.
J. Genet. 82:95–113.

Fisher, R. A. 1918. The correlation between relatives on the suppo-
sition of Mendelian inheritance. Trans. R. Soci. Edinburgh 52:399–
433.

Flury, B. 1997. A first course in multivariate statistics. Springer,
New York.

Flury, B., and H. Riedwyl. 1986. Standard distance in univariate and
multivariate analysis. Am. Stat. 40:249–251.

Goodall, C. R. 1991. Procrustes methods in the statistical analysis of
shape. J. R. Stat. Soc. B 53:285–339.

Harvati, K. 2003. Quantitative analysis of Neanderthal temporal bone
morphology using three-dimensional geometric morphometrics.
Am. J. Phys. Anthropol. 120:323–338.

Kent, J. T., and K. V. Mardia. 1997. Consistency of Procrustes estimators.
J. R. Stat. Soc. B 59:281–290.

Klingenberg, C. P. 2003a. A developmental perspective on develop-
mental instability: Theory, models and mechanisms. Pages 14–34 in
Developmental instability: Causes and consequences (M. Polak, ed.)
Oxford University Press, New York.

Klingenberg, C. P. 2003b. Quantitative genetics of geometric shape:
Heritability and the pitfalls of the univariate approach. Evolution
57:191–195.

Klingenberg, C. P., A. V. Badyaev, S. M. Sowry, and N. J. Beckwith.
2001a. Inferring developmental modularity from morphological in-
tegration: Analysis of individual variation and asymmetry in bum-
blebee wings. Am. Nat. 157:11–23.

Klingenberg, C. P., M. Barluenga, and A. Meyer. 2002. Shape analysis
of symmetric structures: Quantifying variation among individuals
and asymmetry. Evolution 56:1909–1920.

Klingenberg, C. P., M. Barluenga, and A. Meyer. 2003a. Body shape vari-
ation in cichlid fishes of the Amphilophus citrinellus species complex.
Biol. J. Linn. Soc. 80:397–408.

Klingenberg, C. P., and L. J. Leamy. 2001. Quantitative genetics of geo-
metric shape in the mouse mandible. Evolution 55:2342–2352.

Klingenberg, C. P., L. J. Leamy, and J. M. Cheverud. 2004. Integration
and modularity of quantitative trait locus effects on geometric shape
in the mouse mandible. Genetics 166:1909–1921.

Klingenberg, C. P., L. J. Leamy, E. J. Routman, and J. M. Cheverud.
2001b. Genetic architecture of mandible shape in mice: Effects of
quantitative trait loci analyzed by geometric morphometrics. Genet-
ics 157:785–802.

Klingenberg, C. P., and G. S. McIntyre. 1998. Geometric morpho-
metrics of developmental instability: Analyzing patterns of fluc-
tuating asymmetry with Procrustes methods. Evolution 52:1363–
1375.

Klingenberg, C. P., G. S. McIntyre, and S. D. Zaklan. 1998. Left-right
asymmetry of fly wings and the evolution of body axes. Proc. R. Soc.
Lond. B Biol. Sci. 265:1255–1259.

Klingenberg, C. P., K. Mebus, and J.-C. Auffray. 2003b. Developmental
integration in a complex morphological structure: How distinct are
the modules in the mouse mandible? Evol. Dev. 5:522–531.

Klingenberg, C. P., and H. F. Nijhout. 1999. Genetics of fluctuating
asymmetry: A developmental model of developmental instability.
Evolution 53:358–375.

Klingenberg, C. P., and S. D. Zaklan. 2000. Morphological integration
between developmental compartments in the Drosophila wing. Evo-
lution 54:1273–1285.

Lande, R. 1979. Quantitative genetic analysis of multivariate evolution,
applied to brain: Body size allometry. Evolution 33:402–416.

Lande, R., and S. J. Arnold. 1983. The measurement of selection on
correlated characters. Evolution 37:1210–1226.

Leamy, L. J., M. S. Workman, E. J. Routman, and J. M. Cheverud. 2005.
An epistatic genetic basis for fluctuating asymmetry of tooth size
and shape in mice. Heredity 94:316–325.

Lele, S. R. 1993. Euclidean distance matrix analysis (EDMA): Estimation
of mean form and mean form difference. Math. Geol. 25:573–602.

Lele, S. R., and J. T. Richtsmeier. 2001. An invariant approach to statis-
tical analysis of shapes. Chapman & Hall/CRC, Boca Raton.

Liu, J., J. M. Mercer, L. F. Stam, G. C. Gibson, Z.-B. Zeng, and C. C.
Laurie. 1996. Genetic analysis of a morphological shape difference in
the male genitalia of Drosophila simulans and D. mauritiana. Genetics
142:1129–1145.

Lynch, M., and B. Walsh. 1998. Genetics and analysis of quantitative
traits. Sinauer Associates, Sunderland, Massachusetts.

Mantel, N. 1967. The detection of disease clustering and a generalized
regression approach. Cancer Res. 27:209–220.

Mardia, K. V., J. T. Kent, and J. M. Bibby. 1979. Multivariate analysis.
Academic Press, London.

Møller, A. P., and J. P. Swaddle. 1997. Asymmetry, developmental sta-
bility, and evolution. Oxford University Press, Oxford.

Monteiro, L. R., J. A. F. Diniz-Filho, S. F. Dos Reis, and E. D. Araújo. 2002.
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