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Abstract —Morphometric data from longitudinal growth studies with multiple measurements
made in several growth stages on the same specimens confront researchers with difficult statistical
problems because traits are correlated both within and across stages. Here, we introduce a statis-
tical model especially designed to deal with this complexity. The common principal component
(CPC) model for dependent random vectors is based on the assumption that the same pattern
underlies both variation within stages and covariation across stages. Thus, a single transformation,
when applied to all stages, renders the resulting CPCs uncorrelated not only within but also
across stages. Because of these simplifying assumptions, the CPC model greatly reduces the num-
ber of parameters to be estimated; it is thus an efficient tool for data reduction. This model is
demonstrated using growth of the water strider Limnoporus canaliculatus. The CPCs can be inter-
preted as patterns of “size” variation and contrasts between parts that are common to all stages,
although there are minor deviations from the model. The “size¢” CPC accounts for most variation
in all instars and is therefore an effective measure of overall growth. Moreover, the CPC model
clarifies the link between static and ontogenetic variation by including both levels in a joint anal-
ysis and can be used to study morphological integration and constraints on the evolution of
ontogenies. [Allometry; common principal components; Gerridae; growth; longitudinal data; mul-

tivariate morphometrics; size.]

In recent years, there has been renewed
interest in the extent to which ontogeny
acts as a mechanism influencing patterns
of evolutionary change in morphological
traits (e.g.,, Gould, 1977; McKinney and
McNamara, 1991; Hall, 1992). Some stud-
ies have focused on the outcome of these
processes by comparing multivariate pat-
terns of ontogenetic and evolutionary vari-
ation (e.g., Shea, 1985; Voss et al., 1990;
Klingenberg and Zimmermann, 1992; Voss
and Marcus, 1992), whereas others have
emphasized microevolutionary processes
by studying individual variation in growth
and its genetic basis (e.g., Cheverud et al.,
1983; Kirkpatrick, 1988; Lynch, 1988; Atch-
ley and Hall, 1991; Cowley and Atchley,
1992; Bjorklund, 1993).

Numerous studies of the evolution of
ontogeny have focused on individual vari-
ation in growth curves (also called growth
trajectories), i.e., trait measurements as a
function of age or developmental stage.

Age-specific measurements can be treated
as separate variables, or continuous
growth functions can be accommodated by
interpolating between the ages at which
measurements were made (Kirkpatrick,
1988; Kirkpatrick and Lofsvold, 1989; Kirk-
patrick et al., 1990; Bjorklund, 1993). Usu-
ally, the analyses focus on covariances or
correlations among measurements made at
several ontogenetic stages but consider
only one trait at a time, thereby ignoring
correlations among traits (e.g., Cheverud et
al, 1983; Leamy and Cheverud, 1984;
Lynch, 1988; Kirkpatrick et al., 1990; Bjork-
lund, 1993). Cheverud et al. (1983) char-
acterized relationships among variables by
first computing the eigenvectors of among-
stage covariance matrices for each trait
separately and then comparing them using
vector correlations. Bjérklund (1993) used
an analogous procedure within the frame-
work for continuous growth. A more for-
mal approach, however, would simulta-
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neously include all measurements and
stages into the analysis. Yet even for mod-
erate numbers of stages and traits, the full
statistical model, with no constraints im-
posed, would contain a very large number
of parameters to be estimated and thus
would render the application to real data
sets difficult, which is probably why such
a study has not been attempted. Neverthe-
less, a simultaneous analysis of the onto-
genies of several traits is feasible if one
makes some simplifying assumptions, as
suggested by the similarity among pat-
terns of ontogenetic variation found in dif-
ferent traits (Cheverud et al., 1983; Bjork-
lund, 1993).

Another approach to understanding the
connections between ontogeny and evolu-
tion focuses on the static variation among
individuals at a particular stage, which is
the raw material upon which natural selec-
tion can act. This variation is the product
of variation in the developmental processes
that generated the structures under study
and can therefore be used to investigate
these processes (Cheverud, 1982; Zelditch,
1987; Cowley and Atchley, 1990; Atchley et
al., 1992) and their regulation (Tanner,
1963; Atchley, 1984; Riska et al., 1984). Sev-
eral studies comparing patterns of static
variation across ontogenetic stages have
found that a single ““size’”” component dom-
inated the variation within each stage
(Cuzin-Roudy, 1975; Zelditch, 1988; Klin-
genberg and Zimmermann, 1992). None of
these studies, however, considered the cor-
relations of measurements among stages,
either because they were based on cross-
sectional data, with a different sample
taken independently for each stage, or be-
cause the statistical methods were unable
to deal with such correlations.

Here, we introduce a new statistical
model (Neuenschwander, 1991; Flury and
Neuenschwander, 1995a), which we use to
analyze variation in multiple measure-
ments at several ontogenetic stages. The
model specifically uses the information
contained in longitudinal data, with mea-
surements at all stages for each individual,
and it explicitly considers covariation
among traits as well as across stages. As

an extension of the common principal
component (CPC) model for independent
groups (Airoldi and Flury, 1988; Flury,
1988), the model assumes that CPCs are
uncorrelated within each group and be-
tween groups, e.g., the first CPC in one on-
togenetic stage is correlated only with the
first CPC of other stages. This assumption
was derived from observations in earlier
studies of the commonalities among traits
or stages, and our example of growth in
the water strider Limnoporus canaliculatus
demonstrates that it can be realistic. Be-
cause CPCs are uncorrelated within and
between stages, the model effectively di-
vides a very complex analysis into several
simpler ones. Furthermore, it sheds light
on the connection between morphometric
variability and growth variation and sug-
gests a coherent framework to study them
jointly.

STATISTICAL MODELS

Principal component (PC) analysis
(PCA) and its recent extensions are fre-
quently used in morphometric applica-
tions, especially in multivariate allometry
(Jolicoeur, 1963; Pimentel, 1979; Airoldi
and Flury, 1988; Marcus, 1990; Klingen-
berg, 1996). In most of these applications,
the data have a relatively simple structure
and consist of measurements made either
on a single group of specimens or on spec-
imens from several separate groups (e.g.,
species, sexes, ecomorphs, or geographical
variants). Longitudinal growth data, how-
ever, have a more complex structure be-
cause the same individuals are measured
for each growth stage, and the stages
therefore cannot be treated as independent
groups. This interdependence requires
substantial adjustments of the statistical
models used to analyze such data. Because
multivariate studies of multiple groups
and longitudinal studies are based on rath-
er complex data, the need to summarize
these data using simplified models is es-
pecially urgent. In this section, we briefly
review one-group PCA and models of
CPCs for independent groups before we
introduce patterned covariance matrices
for longitudinal data and a model of CPCs
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for dependent random vectors. We empha-
size the use of PC and CPC models as
tools for data reduction.

One-Group Principal Components and
Common Principal Components for
Independent Groups

PCA is a tool used to analyze variation
within a single group of specimens. In the
space spanned by the variables (e.g., in
two dimensions, the plane of a scatter
plot), PCA can be used to assess the
amount and direction of this variation. It
transforms the original variables into PCs,
a set of new variables that successively ac-
count for the largest possible part of total
variation and yet are mutually uncorrelat-
ed (Fig. la). This transformation funda-
mentally changes the covariance matrix
(Fig. 1b) and renders it into diagonal form
(Fig. 1c); because PCs are uncorrelated, all
off-diagonal elements of the covariance
matrix (covariances between pairs of PCs)
are zero, whereas the diagonal contains
the variances of the PCs, or eigenvalues
(see Appendix, PCA).

In many applications, the first few PCs
account for the largest portion of total vari-
ance. In morphometrics, it is not uncom-
mon for the first one or two PCs to take
up =95% of the variation in a much larger
number of variables. The first few PCs
therefore summarize most of the variation
in fewer dimensions, perhaps only one.
Models of this kind, including only one al-
lometric “size”” axis while regarding the
remaining variation as random scatter
around it, have been used traditionally in
morphometrics (e.g., Hopkins, 1966; Book-
stein et al., 1985; Klingenberg, 1996). This
extreme data reduction using simplified
models of within-group variation is help-
ful for comparisons between two or more
groups of specimens.

PCA has been generalized for situations
involving several groups. The CPC model
assumes that the groups all share the same
(common) PCs, but it allows the groups to
differ in the amounts of variation associ-
ated with each one (Airoldi and Flury,
1988; Flury, 1988). The scatter ellipsoids for
all groups therefore have parallel principal
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FIGURE 1. Principal component analysis of a single
group. (a) Bivariate plot with a contour ellipse repre-
senting the distribution of data points. The original
variables X; and X, are transformed into the principal
components Y; and Y, which account for maximal
and minimal variation, respectively (arrows). This
transformation corresponds to a rotation of the coor-
dinate system, in which the new coordinates are
aligned with the major and minor axes of the contour
ellipse. (b) Covariance matrix of the original variables.
Units are arbitrary. (c) Covariance matrix of the prin-
cipal components. The off-diagonal elements of the
matrix are zero. Units are arbitrary.

axes, but the lengths of corresponding axes
may vary. Under the CPC model, a single
transformation simultaneously converts
the covariance matrices of all groups to di-
agonal form (Appendix, CPCs for Inde-
pendent Groups). The CPC model has
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been applied to biological data sets by Air-
oldi and Flury (1988), Klingenberg and
Zimmermann (1992), and Klingenberg and
Spence (1993).

Longitudinal Data and Patterned Couvariance
Matrices

The CPC model was designed for inde-
pendent groups, e.g., samples drawn from
different sexes, ecomorphs, or species. Nu-
merous growth studies use separate sam-
ples of specimens in different ontogenetic
stages; such cross-sectional data can be an-
alyzed using the CPC model for indepen-
dent groups (e.g., Klingenberg and Zim-
mermann, 1992). Longitudinal data,
however, consist of measurements made
on the same specimens in several growth
stages (Fig. 2a), and these stages therefore
are not independent groups. Following in-
dividuals through growth has obvious
benefits; questions about individual varia-
tion in growth processes and their
regulation can be addressed, e.g., whether
there is compensatory growth (Tanner,
1963; Monteiro and Falconer, 1966; Riska et
al., 1984; Lynch, 1988; Kirkpatrick et al,,
1990; Cowley and Atchley, 1992). As a con-
sequence of this additional information,
however, the structure of longitudinal data
is more complex than that of cross-section-
al data.

For a typical longitudinal study, in each
of k different growth stages p measure-
ments are taken on the same 7 specimens
(Fig. 2a). The data are most conveniently
arranged in an 7 X kp matrix, i.e., the mea-
surements for the different stages are treat-
ed as separate variables. The resulting co-
variance matrix has a distinctive pattern: it
consists of an array of k X k submatrices,
each of dimension p X p (Fig. 2b). The
blocks along the main diagonal of the ma-
trix (Fig. 2b, shaded boxes) are the within-
stage covariance matrices, and they also
are used in cross-sectional analyses. They
characterize static variation between indi-
viduals within each stage. The off-diagonal
blocks (Fig. 2b, cross-hatched boxes) con-
tain covariances between measurements
taken in different growth stages.

The number of variables in a longitudi-
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FIGURE 2. The structure of longitudinal data. (a)
Bivariate scatter plot with contour ellipses for two
growth stages (i.e, p = 2, k = 2). The measurements
for two specimens (@, A) are plotted in each stage
and connected by arrows. (b) Patterned covariance
matrix describing the data. The morphometric mea-
surements X, and X, of each stage are entered sepa-
rately as variables for the analysis. The blocks on the
main diagonal (shaded) are the within-stage covari-
ance matrices of stages 1 and 2. The off-diagonal
blocks (cross-hatched, with arrows) contain covari-
ances of measurements between stages, which can be
used to study regulatory phenomena such as compen-
satory growth.

Stage 2 Stage 1
XX XX

nal analysis can be very large, even with
moderate numbers of measurements and
stages. The example we use to demon-
strate this approach contains four mea-
surements and six growth stages and is
thus smaller than the data sets used in
many similar studies. Nevertheless, there
are 24 variables in the analysis, and with-
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out further constraints, the number of pa-
rameters required for a full statistical de-
scription of the covariance structure is 300
(24 X [24 + 1]/2; see Appendix). This
complexity of longitudinal data calls for
techniques of data reduction; therefore, we
introduce a simplified model for which
fewer parameters need to be estimated but
that can still represent the data with rea-
sonable accuracy.

Common Principal Components for Dependent
Random Vectors

The CPC model described above as-
sumes that a single transformation simul-
taneously converts the covariance matrices
of k groups to diagonal form. Because the
groups are assumed to be independent of
one another, these covariance matrices
characterize the variation within groups
sufficiently. If the groups are interdepen-
dent, however, there are k sets of measure-
ments (groups, growth stages), each with
the same p variables, for every observation
(examples given by Flury and Neuensch-
wander, 1995a). The result is a patterned
kp X kp covariance matrix composed of k?
submatrices (each of format p X p); the k
within-group covariance matrices are ar-
ranged as blocks along the diagonal, and
the off-diagonal blocks are matrices of co-
variances between groups. Figure 3a
shows such a patterned covariance matrix
for ontogenetic data, where the groups cor-
respond to discrete growth stages.

Like the CPC model for independent
groups, the model of CPCs for dependent
random vectors assumes that all the
groups share the same PCs. Therefore, the
transformation to CPCs converts all the
within-group covariance matrices to diag-
onal form (the blocks along the diagonal
in Fig. 3b). In addition, however, the same
transformation must also render diagonal
all the remaining submatrices, which con-
tain the covariances of measurements
across groups (Appendix, CPCs for De-
pendent Random Vectors; Neuenschwan-
der, 1991; Flury and Neuenschwander,
1995a). This means that only correspond-
ing CPCs are correlated among groups; for
example, only the pairs of first or pairs of

(a) L1 L2 L3 L4 L5 ad

(b) L1 L2 L3 L4 L5 ad

FIGURE 3. The model of common principal com-
ponents for dependent random vectors. The structure
of longitudinal data is shown as in the water strider
example, with six discrete growth stages (five larval
instars, denoted L1-L5, and the adult stage) and four
morphometric variables. Shading represents the ap-
proximate magnitude of matrix elements (blank = 0).
(a) Covariance matrix. The blocks along the diagonal
are the covariance matrices within stages, and the off-
diagonal blocks contain covariances between stages.
Each block is a 4 X 4 matrix, as indicated by the grid
in the covariance matrix for L1. (b) Covariance matrix
of the CPCs. All the submatrices have diagonal form
because only pairs of corresponding PCs are correlat-
ed between instars.

second CPCs are correlated among
groups, not the first CPC in one group
with the second CPC in another group.
This CPC model results in a substantial
reduction in the number of parameters to
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FIGURE 4. Rearrangement of the patterned covari-
ance matrix after CPC transformation (cf. Fig. 3b). The
transformation considerably simplified the structure
of longitudinal growth data. Because the CPCs are un-
correlated both within and among stages, they can be
examined separately. The multivariate problem is thus
reduced to a study of the matrix of covariances be-
tween stages for each CPC. If some CPCs only account
for a small amount of variation, they may be omitted
from the analysis.

be estimated. In the example with k = 6
and p = 4, there are only 90 parameters
instead of 300 in the unconstrained model
(see Appendix, Number of Parameters).
The advantage of the model becomes more
apparent if the covariance matrix shown in
Figure 3b is rearranged so that rows and
columns are ordered by CPCs rather than
by groups (Fig. 4). This rearranged matrix
consists of p? blocks of format k X k. All
the elements of the off-diagonal blocks are
zero values. The CPCs can now be studied
separately because they are uncorrelated.

For longitudinal growth studies with
multiple measurements, this model reduc-
es a complex multivariate problem into a
number of simpler analyses, each consid-
ering one CPC. Thus, p matrices of covar-
iances of CPC scores among developmen-
tal stages must be examined, using the
methods developed for analyses of a single
measurement. Moreover, CPCs accounting
for only minor amounts of variation may
be ignored in the interpretation of results,
as in one-group PCA, to simplify the anal-
ysis even further.

EXAMPLE: GROWTH IN WATER STRIDERS
Data

Water striders (Heteroptera: Gerridae)
are especially suitable for studying the on-
togeny of individual variation because
their growth occurs in six discrete stages;
five larval instars, denoted L1-L5, precede
the adult stage. Because there is no varia-
tion in the number of larval instars, they
are comparable developmental stages. Be-
cause of the rigid cuticle, the growth of nu-
merous structures can be followed easily
for the entire postembryonic development,
as in other hemimetabolous insects. More-
over, water striders can be reared individ-
ually in the laboratory, and it is easy to
obtain a complete record of each individ-
ual’s growth by collecting the exuviae at
every molt.

For this study, we used longitudinal
growth data from the water strider Lim-
noporus canaliculatus, reared under con-
trolled laboratory conditions (20°C, 16 hr
light: 8 hr dark). Water striders collected in
the wild (Morris County, New Jersey; 1
May 1992) were set up as a mass culture,
from which eggs were taken for individual
rearings. Within about 12 hr of hatching,
first instar larvae were put separately into
plastic containers (diameter = 11.5 cm,
height = 8 cm), each with about 1 cm of
water and a small Styrofoam strip floating
on the surface. Each larva was fed a frozen
flesh fly (Neobelliera bullata) daily and
checked for molts at intervals of about 12
hr, and all exuviae were collected. After
the adults emerged, they were killed by
freezing. Exuviae and adults were stored
in 70% ethanol for several months before
measuring.

The variables used in this study are the
lengths of the femora and tibiae of the
middle and hind legs, measured on both
body sides. Shrinking and other artifacts
of preservation are negligible, because the
cuticle of the legs consists of rigidly scler-
otized tubes even in the otherwise delicate
first instar exuviae. All measurements
were taken with a video system attached
to a dissecting microscope.

If the measurements could be made on
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FIGURE 5. Covariance matrix for stage-specific measurements in females of the water strider Limnoporus
canaliculatus. The lengths of middle and hind femora and tibiae (ME MT, HE HT) are the four measurements
taken for all five larval instars (L1-L5) and adults (Ad.). Values on the vertical axis are variances and covariances
for natural log-transformed measurements, multiplied by 10%.

both body sides, we used arithmetic
means of left and right sides; otherwise we
used measurements from one side. Data
were checked for outliers for each variable
separately in every instar. A few individ-
uals were excluded from the data set be-
cause of deformities related to abnormal
molting. In this study, we used the data for
89 females for which complete data were
available in each instar (the data set is
available from C.PK. on request). All mea-

surements were transformed to natural
logarithms before the analysis.

Statistical Analysis and Results

The covariance matrix of stage-specific
measurements is the basis for the follow-
ing analysis. The most conspicuous feature
of this matrix is a general increase in var-
iances from early to late instars, but es-
pecially in the L5 instar and adult (Fig. 5).
The tibia of the hind legs is the most vari-
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able trait in each instar. This pattern is not
only repeated in every instar, but to a cer-
tain extent it also applies to the covari-
ances among instars; the division of the co-
variance matrix into blocks is therefore
visible mostly from the ““peaks” represent-
ing the hind tibia in different instars (Fig.
5). All covariances within and between in-
stars are positive, and covariances tend to
be higher between consecutive instars than
between those farther apart.

The patterns of variation within instars
can be characterized separately with PCA.
Despite the general increase in the amount
of variation from instar to instar (Fig. 5),
the proportion accounted for by each PC
remains fairly constant. Within each instar,
PC1 accounts for the largest proportion of
the total variance, and PCls have coeffi-

TABLE 1.

cients that are all positive (Table 1). There-
fore, they can be interpreted as “’size’” vec-
tors, reflecting static allometry. The
allometric patterns are similar in all in-
stars, as indicated by the high vector cor-
relations among PCls, which all exceed
0.99, and the corresponding angles, which
range from 0.97° to 7.5°. PC2, which takes
up a moderate amount of variation in all
instars, is a contrast of the hind tibia with
the middle and hind femora; the middle
tibia has coefficients of smaller magnitude,
which even vary in their sign. PC3 and
PC4 only account for small proportions of
the total variation.

CPCs for dependent random vectors.—
Whereas one-group PCA always can trans-
form the covariance matrix of a sample to
exactly diagonal form, simultaneous anal-

Patterns of individual variation in water striders, analyzed by separate PCAs in each life stage

(instars L1-L5 and adult). Values presented are the PC coefficients for each variable and the percentages of

total variance (% variance) for which each PC accounts.

Stage Variable? PC1 PC2 PC3 PC4
L1 MF 0.455 0.342 -0.144 0.809
MT 0.500 —0.236 0.832 —0.034
HF 0.516 0.612 -0.159 -0.578
HT 0.526 —0.672 -0.511 -0.102
% variance 76.9 14.8 5.1 3.2
L2 MF 0.504 0.434 0.217 -0.714
MT 0.486 -0.128 0.716 0.484
HF 0.482 0.489 —0.556 0.468
HT 0.527 —0.745 —-0.361 -0.191
% variance 80.7 11.7 4.8 2.8
L3 MF 0.445 0.532 0.128 -0.709
MT 0.496 —0.167 0.787 0.328
HF 0.457 0.510 —0.426 0.591
HT 0.589 —0.656 —0.428 -0.199
% variance 77.4 14.9 4.1 3.7
L4 MF 0.444 0.497 0.059 —0.743
MT 0.481 —0.057 0.816 0.315
HF 0.448 0.514 —0.450 0.576
HT 0.609 -0.697 -0.357 -0.131
% variance 80.2 134 4.5 1.9
L5 MF 0.436 0.465 —0.095 0.765
MT 0.474 0.058 0.856 -0.199
HF 0.446 0.499 —0.423 -0.610
HT 0.622 -0.729 —0.282 0.054
% variance 80.3 13.0 4.8 1.8
Adult MF 0.430 0.462 —0.138 0.763
MT 0.513 0.051 0.840 -0.169
HF 0.422 0.513 —0.414 —0.623
HT 0.611 -0.722 -0.322 0.034
% variance 79.4 14.3 48 15

aMF = middle femur; MT = middle tibia; HF = hind femur; HT = hind tibia.
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TABLE 2. Joint pattern of variation in all five larval
instars and adult of the water strider data. Values pre-
sented are CPC coefficients (jackknife standard errors
in parentheses).

Varia-
ble* CPC1 CPC2 CPC3 CPC4
MEF 0.471 0.436 —0.059 0.765
(0.020) (0.042) (0.092) (0.023)
MT 0414 0.073 0.878 -0.229
(0.024) (0.051) (0.035) (0.107)
HF 0.491 0.466 —0.427 —0.600
(0.028) (0.043) (0.087) (0.059)
HT 0.605 -0.767 -0.209 0.048
(0.033) (0.031) (0.051) (0.051)

aMF = middle femur; MT = middle tibia; HF = hind fe-
mur; HT = hind tibia.

yses of multiple groups generally pose
more difficult problems. Even if the CPC
model holds, sampling variation will gen-
erally make it impossible for any single
transformation to render all blocks of the
covariance matrix perfectly diagonal. Esti-
mation of the CPC coefficients is therefore
an optimization process, searching for a
transformation that minimizes a measure
of deviation from simultaneous diagonali-
ty in all blocks of the covariance matrix
(Appendix, Estimation of CPCs). For this
purpose, we used a version of the orthog-
onal FG* algorithm (Neuenschwander,
1991; Flury and Neuenschwander, 1995b)
written in the SAS/IML language (a text
file with this routine is available through
the Internet: file://life.bio.sunysb.edu/
morphmet/dcpc.exe.ibmpc; a version writ-
ten in GAUSS is available from B.E.N. or
B.D.E). Standard errors for the estimates of
the CPC coefficients were computed using
the jackknife method (leave-one-out pro-
cedure; e.g., Efron and Tibshirani, 1993:
chapter 11). The ordering of CPCs is some-
what arbitrary because the amounts of
variation they take up in each instar can
vary. Here, we ranked them according to
the average proportion of total variance or
between-instar covariance for which they
accounted in each block of the covariance
matrix.

The CPC coefficients (Table 2) closely
correspond to the patterns seen in the
PCAs for single instars. CPC1 is an overall
"‘size’’ axis, weighting the hind tibia some-

what more and the middle tibia slightly
less than the two femur lengths, whereas
the other CPCs are contrasts between mea-
surements that are fairly similar to the cor-
responding within-instar PCs. We applied
the CPC transformation to all larval and
adult stages and thereby changed the co-
variance matrix of the original variables
(Fig. 5) into that of the CPCs (Fig. 6; cf.
Figs. 3a, 3b). The covariance matrix of
transformed variables is an array of
“spikes’”” and thus shows that CPC1 clearly
dominates the variation in all developmen-
tal stages and accounts for almost all the
covariance among stages (Fig. 6). The per-
centages of within-instar variance taken
up by the CPC1 are only slightly lower
than those for which the PC1s account (cf.
Tables 1, 3). Therefore, the CPC1 is a fairly
good summary of static allometry in all
stages jointly.

Rearranging the covariance matrix by
CPCs makes the dominance of CPC1 even
more visible (Fig. 7). The variance in this
“’size’” component is fairly constant in L1-
L3 but later increases markedly from stage
to stage. In CPC1 and CPC2, the covari-
ances among instars are highest between
successive instars and decline substantial-
ly as the number of intervening instars in-
creases. The variance of CPC2 remains
fairly constant in the younger instars and
gradually increases in the L5 and adult.
Because this increase parallels that in
CPC1, the CPCs account for similar pro-
portions of total variance in each instar
(Table 3).

Most of the covariances between differ-
ent CPCs (off-diagonal blocks in Fig. 7) are
low, suggesting that the CPCs are almost
uncorrelated. There are, however, weak to
moderate positive correlations between
CPC1 and CPC3, ranging from 0.12 to
0.41, and between CPC2 and CPC3 (0.07-
0.32). Negative correlations are especially
frequent between the CPC4 scores in the
L1-L4 and the CPC2 and CPC3. The other
correlations between CPCs do not display
any apparent pattern, and most are sub-
stantially weaker (total range of —0.27 to
0.23). This indicates that the CPC model
fits these data fairly well.
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FIGURE 6. Covariance matrix after transformation to CPCs within each instar. “Spikes” are produced by the
variances and between-instar covariances of the first CPC. Values on the vertical axis are variances and covar-
iances of CPCs for natural log-transformed measurements, multiplied by 10%. L1-L5 = larval instars; Ad. =

adult.

Test of the CPC model—To evaluate
whether these correlations seriously violate
the assumptions of the CPC model, we
used permutation tests, also known as ran-
domization tests (Edgington, 1986, 1987;
Manly, 1991; Efron and Tibshirani, 1993:
chapter 15; Westfall and Young, 1993;
Good, 1994). This class of tests uses re-
peated permutations of the original data to
simulate the distribution of a test statistic
under the null hypothesis stating that two

or more samples are drawn from the same
population or that several variables are un-
correlated. Our test is based on the fact
that, under the CPC model, different CPCs
are uncorrelated within and between in-
stars (Figs. 3b, 4). This test follows the pro-
cedure for testing bivariate correlations
against the null hypothesis of indepen-
dence by reshuffling the values of one vari-
able repeatedly (Pitman, 1937; Edgington,
1987:198-201). We first computed the CPC
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FIGURE 7. Covariance matrix arranged by CPCs. The covariation of the CPCs among instars is more apparent
here than in Figure 6. Values on the vertical axis are variances and covariances of CPCs for natural log-
transformed measurements, multiplied by 10%. L1-L5 = larval instars; Ad. = adult.

TABLE 3. Percentages of total within-instar vari-
ance taken up by each CPC of the water strider data.

Stage CPC1 CPC2 CPC3 CPC4
L1 759 13.8 6.7 3.6
L2 79.7 11.9 53 3.1
L3 76.8 14.0 54 39
L4 79.7 13.2 5.1 19
L5 79.8 13.2 5.2 1.8
Adult 782 144 58 15

scores for each individual and then ran-
domly reshuffled the observations sepa-
rately for CPC2-CPC4, each time keeping
all developmental stages together. This left
the associations among stages unchanged
for each CPC, because the permutation
procedure affected only the correlations
between different CPCs. This step was re-
peated 1,000 times. We calculated the
CPCs for each of the randomized data sets
and computed three different test statistics:
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(1) the e statistic of deviation from simul-
taneous diagonality in all blocks of the co-
variance matrix (Appendix, Estimation of
CPCs) as an overall test, (2) the maximum
absolute covariance, and (3) correlation be-
tween different CPCs (i.e., excluding the
diagonal entries in each block of the co-
variance matrix).

The e statistic did not reach the observed
value in any of the 1,000 simulation runs
of the CPC model and therefore provides
strong evidence that the CPC model does
not fit the data well overall. The maximal
covariance and correlation between differ-
ent CPCs of the original data, both be-
tween CPC1 and CPC3 in adults (see Fig.
7), were attained in only six or eight ran-
domization runs and thus supported the
result obtained with the e statistic. Because
CPC3 accounts for a small fraction of the
total variation, despite its relatively high
correlations with other CPCs, we repeated
the randomization test with two new sta-
tistics: the maximal absolute covariance
and correlation not involving CPC3. These
statistics matched or exceeded the ob-
served values in 40.1% and 34.2% of the
randomization runs, respectively. From
this, we conclude that the statistically sig-
nificant deviations from the CPC model
are related to CPC3, but neither covari-
ances nor correlations among the other
CPCs are distinguishable from random ef-
fects.

DIscUSsSION

The statistical model introduced here is
designed to analyze the variation of mul-
tiple variables in several interdependent
groups. Our example is an application of
this method to the familiar problem of lon-
gitudinal data with a number of measure-
ments taken in several ontogenetic stages
(e.g., Cuzin-Roudy, 1975; Cheverud et al,,
1983; Bjorklund, 1993). Because statistical
methods to deal with such a complex data
structure have not been available, previous
authors had to treat different stages inde-
pendently and thus ignore the longitudinal
nature of the data or they were forced to
perform the analyses separately for each
measurement, thereby neglecting the cor-

relations among traits. A model that spe-
cifically addresses the complexity of the
data structure offers several advantages in
this situation. First, it allows inclusion of
all traits in a single analysis rather than
only an informal comparison of the results
from separate analyses. Moreover, the sim-
plifying assumptions made by the CPC
model, when met, can provide further in-
sight into the underlying patterns of vari-
ation and can lead to substantial data re-
duction if most variation can be
approximated by just a few CPCs.

However, we must assess the fit of the
model to the data set. The model assumes
that the CPCs are independent of each oth-
er both within and across developmental
stages and that nonzero covariances and
correlations between different CPCs are
due to sampling variation. Covariances be-
tween CPCs are generally low (Fig. 7), al-
though there are relatively high correla-
tions involving CPC3. Unfortunately, tests
based on large-sample theory (Neuen-
schwander, 1991; Flury and Neuenschwan-
der, 1995a) are not reliable in this case be-
cause the sample size (89) is fairly small
compared with the 24 variables in the
model (i.e.,, four measurements in each of
six stages). For this reason, we used a per-
mutation test (Pitman, 1937; Edgington,
1986, 1987, Manly, 1991; Westfall and
Young, 1993; Good, 1994). Overall, there
are significant deviations from the CPC
model, but closer examination showed that
they all concern CPC3, which accounts for
only a minor proportion of the total vari-
ation. The other CPCs are nearly uncorre-
lated within and across stages, and there-
fore, with some caution, the CPC model
can be applied here.

Use of the CPC model, although it may
not fit the data perfectly, dramatically sim-
plifies the problem by reducing the num-
ber of parameters to be estimated. In our
example, the CPC model uses less than one
third of the parameters it takes for a full
statistical description with the uncon-
strained model. Only these simplifying as-
sumptions make longitudinal growth data
with multiple measurements statistically
tractable. Unlike the original 24 X 24 co-
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variance matrix (Fig. 5), the transformed
and rearranged matrix (Fig. 7) shows some
simple patterns, for which biological inter-
pretations can be sought. This benefit far
outweighs the relatively minor misfit of the
model.

The CPC model can also be an effective
tool for further data reduction. In our ex-
ample, CPC3 and CPC4 account for small
amounts of variation in all stages and
probably can be ignored for most purposes
(see Table 3). CPC2 has a moderate degree
of variability in all stages (Fig. 7), and to
give a fairly complete description of mor-
phometric variability throughout ontogeny
it should be considered along with CPC1.

CPC1, which is an “overall size’’ com-
ponent, takes up the largest proportion of
static variability within each stage and also
accounts for most of the covariance be-
tween stages. The variances of CPC1 are
fairly constant in the L1-L3 instars but
then increase from stage to stage, suggest-
ing that variability in “size” added at each
molt is first compensated by some regu-
latory mechanism that is then switched off
in L4, leading to divergent growth in the
later stages (Riska et al.,, 1984). Such vari-
ability in growth regulation between on-
togenetic stages has also been shown in
other arthropods (e.g., Hartnoll and Dal-
ley, 1981; Tanaka, 1981; West and Costlow,
1987). The hypothesis that growth is not
strongly ““targeted” is further supported
by the covariances of CPC1 between in-
stars, which are all positive and relatively
high (correlations are 0.37-0.93), indicating
that individuals tend to be either relatively
small or relatively large in all instars (Klin-
genberg, unpubl). CPC2 and CPC3 take
up moderate or small amounts of variance
throughout the entire life cycle.

The basis of the CPC model is an as-
sumption about the covariation of morpho-
metric traits: all ontogenetic stages share
the same structure of static variation,
which also forms the pattern of covariation
among stages. As a consequence of this
parallelism, the CPCs are uncorrelated
within each stage and among stages.
Therefore, variation of the CPCs during
growth can be studied separately, using

the methods developed for single traits
(e.g., Cheverud et al, 1983; Lynch, 1988;
Kirkpatrick and Lofsvold, 1989). This pro-
cedure, although superficially similar to
the approach using a separate analysis for
each measurement, does not ignore the
correlations among traits because the
CPCs explicitly account for them. There-
fore, the CPC model divides a very com-
plex analysis into a few simpler ones. A
quick comparison of the covariance matri-
ces shown in Figures 5 and 7, which con-
tain the same information because both
CPC transformation and rearranging are
reversible, demonstrates the effectiveness
of this approach.

Morphometric variation within stages
has long been the focus of numerous stud-
ies under the headings of static allometry
(e.g., Cuzin-Roudy, 1975; Gibson et al.,
1984; Klingenberg and Zimmermann,
1992) and morphological integration (e.g.,
Cheverud, 1982, 1995; Leamy and Atchley,
1984; Zelditch, 1987, 1988; Wagner, 1990).
Although various authors have differed
widely in their goals and methods used,
they all examined the strength of associa-
tions among traits. In the CPC framework,
the dominance of CPCl1 reflects these as-
sociations. Because this pattern applies to
covariances between as well as within de-
velopmental stages (Fig. 6), the CPC ap-
proach extends the study of integration
from isolated examinations of within-stage
variability to a unified analysis of growth.
Such an analysis can also be used to in-
vestigate the variability and possible evo-
lutionary constraints of growth curves by
studying the covariances of each CPC be-
tween stages (Kirkpatrick and Lofsvold,
1992; Bjorklund, 1993).

Covariances among traits in different
ontogenetic stages indicate variation and
possible constraints for the evolution of on-
togenetic trajectories. This unique infor-
mation is only available from longitudinal
studies. Nevertheless, because such studies
are very labor intensive and only feasible
for organisms that can be reared in the lab-
oratory (but see Bjorklund, 1993), few such
studies exist. Cross-sectional studies com-
paring the ontogenies of different species
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(e.g., Klingenberg and Spence, 1993) or
patterns of allometry (Klingenberg and
Zimmermann, 1992) are alternative ap-
proaches to these problems. A combination
of all these methods is most promising for
an integrated understanding of individual
variation, growth, and evolution.

The CPC model demonstrates the inti-
mate link between the comparison of static
variation in several stages and the study of
variability in growth curves, which have
been the two most important approaches
to the study of the connection between on-
togenetic processes and evolution. This
model, applied to phenotypic or genetic
covariance matrices, will be a useful tool
for further exploration of this connection.

ACKNOWLEDGMENTS

We thank Rosalind Barrington Leigh for her patient
assistance in rearing water striders and John Spence
for valuable discussions and advice. We are grateful
to Les Marcus, John Spence, Miriam Zelditch, and
Manfred Zimmermann for constructive comments on
earlier versions of the manuscript. Financial support
was provided in part by a postdoctoral grant from the
Swiss National Science Foundation to B.E.N., by a Uni-
versity of Alberta Ph.D. Scholarship and an Izaak Wal-
ton Killam Memorial Scholarship to C.PK., and by op-
erating and equipment grants from the Natural
Sciences and Engineering Research Council (Canada)
to John R. Spence.

REFERENCES

AmroLpy, J.-P, AND B. K. FLURY. 1988. An application
of common principal component analysis to cranial
morphometry of Microtus californicus and M. ochro-
gaster (Mammalia, Rodentia). J. Zool. Lond. 216:21-
36.

ATCHLEY, W. R. 1984. Ontogeny, timing of develop-
ment, and genetic variance—covariance structure. Am.
Nat. 123:519-540.

ATcHLEY, W. R.,, D. E. CowLEy, C. VoGL, aND T.
MCcLELLAN. 1992. Evolutionary divergence, shape
change, and genetic correlation structure in the ro-
dent mandible. Syst. Biol. 41:196-221.

ATcHLEY, W. R, AND B. K. HaLL. 1991. A model for
development and evolution of complex morphologi-
cal structures. Biol. Rev. 66:101-157.

BJORKLUND, M. 1993. Phenotypic variation of growth
trajectories in finches. Evolution 47:1506-1514.

BooksTEN, E L., B. CHERNOFF, R. L. ELDER, J. M. HuM-
PHRIES, JR, G. R. SMITH, AND R. E. STRAUSS. 1985.
Morphometrics in evolutionary biology: The geome-
try of size and shape change, with examples from
fishes. Spec. Publ. Acad. Nat. Sci. Phila. 15:i-xvii, 1-
277.

CHEVERUD, ]. M. 1982. Phenotypic, genetic, and envi-

ronmental morphological integration in the cranium.
Evolution 36:499-516. .

CHEVERUD, J. M. 1995. Morphological integration in
the saddle-backed tamarin (Saguinus fuscicollis) cra-
nium. Am. Nat. 145:63-89.

CHEVERUD, J. M,, J. J. RUTLEDGE, AND W. R. ATCHLEY.
1983. Quantitative genetics of development: Genetic
correlations among age-specific trait values and the
evolution of ontogeny. Evolution 37:895-905.

CowLEy, D. E, AND W. R. ATCHLEY. 1990. Develop-
ment and quantitative genetics of correlation struc-
ture among body parts of Drosophila melanogaster.
Am. Nat. 135:242-268.

CowtLEY, D. E,, AND W. R. ATCHLEY. 1992. Quantitative
genetic models for development, epigenetic selection,
and phenotypic evolution. Evolution 46:495-518.

CuziN-Roupy, J. 1975. Etude de la variabilité et de
l’allométrie de taille chez Notonecta maculata Fabricius
(Insectes, Hétéropteres), par les méthodes classiques
et par la méthode des composantes principales. Arch.
Zool. Exp. Gén. 116:173-227.

EDGINGTON, E. S. 1986. Randomization tests. Pages
530-538 in Encyclopedia of statistical sciences, Vol-
ume 7 (S. Kotz and N. L. Johnson, eds.). Wiley, New
York.

EDGINGTON, E. S. 1987. Randomization tests, 2nd edi-
tion. Dekker, New York.

EFRON, B., AND R. J. TIBSHIRANI. 1993. An introduction
to the bootstrap. Chapman and Hall, New York.

FLURY, B. 1988. Common principal components and
related multivariate models. Wiley, New York.

FLURY, B. D, AND B. E. NEUENSCHWANDER. 1995a.
Principal component models for patterned covariance
matrices, with applications to canonical correlation
analysis of several sets of variables. Pages 90-112 in
Recent advances in descriptive multivariate analysis
(W. J. Krzanowski, ed.). Oxford Univ. Press, Oxford,
England.

FLURY, B. D., AND B. E. NEUENSCHWANDER. 1995b. Si-
multaneous diagonalization algorithms with appli-
cations in multivariate statistics. Pages 179-206 in
Approximation and computation: A festschrift in
honor of Walter Gautschi (R. Zahar, ed.). Birkhéuser,
Boston.

GIBSON, A. R,, A. J. BAKER, AND A. MOEED. 1984. Mor-
phometric variation in introduced populations of the
common myna (Acridotheres tristis): An application of
the jackknife to principal component analysis. Syst.
Zool. 33:408-421.

Goop, P. 1994. Permutation tests: A practical guide to
resampling methods for testing hypotheses. Spring-
er-Verlag, New York.

GouLDp, S. . 1977. Ontogeny and phylogeny. Harvard
Univ. Press, Cambridge, Massachusetts.

HaLL, B. K. 1992. Evolutionary developmental biology.
Chapman and Hall, London.

HARTNOLL, R. G.,, AND R. DALLEY. 1981. The control of
size variation within instars of a crustacean. J. Exp.
Mar. Biol. Ecol. 53:235-239.

HoPKINS, J. W. 1966. Some considerations in multivar-
iate allometry. Biometrics 22:747-760.

JAacksoN, J. E. 1990. A user’s guide to principal com-
ponents. Wiley, New York.



1996

KLINGENBERG ET AL.—PATTERNED COVARIANCE MATRICES

149

JoBsoN, J. D. 1992. Applied multivariate data analysis,
Volume II. Categorical and multivariate methods.
Springer-Verlag, New York.

JOLICOEUR, P. 1963. The multivariate generalization of
the allometry equation. Biometrics 19:497-499.

JoLLrrg, 1. T. 1986. Principal component analysis.
Springer-Verlag, New York.

KIRKPATRICK, M. 1988. The evolution of size in size-
structured populations. Pages 13-28 in Size-struc-
tured populations (B. Ebenmann and L. Persson,
eds.). Springer-Verlag, Berlin.

KIRKPATRICK, M., AND D. LOFsvOLD. 1989. The evolu-
tion of growth trajectories and other complex quan-
titative characters. Genome 31:778-783.

KIRKPATRICK, M., AND D. LorsvOLD. 1992. Measuring
selection and constraint in the evolution of growth.
Evolution 46:954-971.

KIRKPATRICK, M., D. LOFSVOLD, AND M. BULMER. 1990.
Analysis of the inheritance, selection and evolution of
growth trajectories. Genetics 124:979-993.

KLINGENBERG, C. P. 1996. Multivariate allometry. Pages
2349 in Advances in morphometrics (L. E Marcus,
M. Corti, A. Loy, D. Slice, and G. Naylor, eds.). Ple-
num, New York.

KLINGENBERG, C. P, AND ]J. R. SPENCE. 1993. Hetero-
chrony and allometry: Lessons from the water strider
genus Limnoporus. Evolution 47:1834-1853.

KLINGENBERG, C. P, AND M. ZIMMERMANN. 1992. Stat-
ic, ontogenetic, and evolutionary allometry: A mul-
tivariate comparison in nine species of water striders.
Am. Nat. 140:601-620.

Leamy, L, AND W. R. ATCHLEY. 1984. Morphometric
integration in the rat (Rattus sp.) scapula. J. Zool.
Lond. 202:43-56.

LeEamy, L., AND J. M. CHEVERUD. 1984. Quantitative
genetics and the evolution of ontogeny. II. Genetic
and environmental correlations among age-specific
<naracters in randombred house mice. Growth 48:
339-353.

LyticH, M. 1988. Path analysis of ontogenetic data.
Pages 29-46 in Size-structured populations (B. Eben-
mann and L. Persson, eds.). Springer-Verlag, Berlin.

MaNLY, B. E J. 1991. Randomization and Monte Carlo
methods in biology. Chapman and Hall, London.

MaRrcus, L. E 1990. Traditional morphometrics. Pages
77-122 in Proceedings of the Michigan morphomet-
rics workshop (E J. Rohlf and E L. Bookstein, eds.).
Univ. Mich. Mus. Zool. Spec. Publ. 2. Univ. Michigan,
Ann Arbor.

MCcCKINNEY, M. L., AND K. J. MCNAMARA. 1991. Het-
erochrony: The evolution of ontogeny. Plenum, New
York.

MONTEIRO, L. S., AND D. S. FALCONER. 1966. Compen-
satory growth and sexual maturity in mice. Anim.
Prod. 8:179-192.

NEUENSCHWANDER, B. E. 1991. Common principal
components for dependent random vectors. Ph.D.
Thesis, Univ. Bern, Bern, Switzerland.

PIMENTEL, R. A. 1979. Morphometrics: The multivar-
iate analysis of biological data. Kendall/Hunt, Du-
buque, Iowa.

PrrMaN, E. J. G. 1937. Significance tests which may be

applied to samples from any populations. II. The cor-
relation coefficient test. J. R. Stat. Soc. B 4:225-232.

Riska, B.,, W. R. ATCHLEY, AND J. J. RUTLEDGE. 1984. A
genetic analysis of targeted growth in mice. Genetics
107:79-101.

SHEA, B. T. 1985. Bivariate and multivariate growth al-
lometry: Statistical and biological considerations. J.
Zool. Lond. 206:367-390.

TANAKA, A. 1981. Regulation of body size during lar-
val development in the German cockroach, Blatella
germanica. J. Insect Physiol. 27:587-592.

TANNER, J. M. 1963. Regulation of growth in size in
mammals. Nature 199:845-850.

Voss, R. S, AND L. E MaRrcus. 1992. Morphological
evolution in muroid rodents. II. Craniometric factor
divergence in seven Neotropical genera, with exper-
imental results from Zygodontomys. Evolution 46:
1918-1934.

Voss, R. S, L. E MARCUS, AND P. ESCALANTE. 1990.
Morphological evolution in muroid rodents. I. Con-
servative patterns of craniometric covariance and
their ontogenetic basis in the neotropical genus Zygo-
dontomys. Evolution 44:1568-1587.

WAGNER, G. P. 1990. A comparative study of morpho-
logical integration in Apis mellifera (Insecta, Hyme-
noptera). Z. Zool. Syst. Evolutionsforsch. 28:48-61.

WEsT, T. L., AND J. D. CosTLOw. 1987. Size regulation
in larvae of the crustacean Balanus eburneus (Cirri-
pedia: Thoracica). Mar. Biol. 96:47-58.

WESTFALL, P, AND S. S. YOUNG. 1993. Resampling-
based multiple testing. Wiley, New York.

ZELDITCH, M. L. 1987. Evaluating models of develop-
mental integration in the laboratory rat using con-
firmatory factor analysis. Syst. Zool. 36:368-380.

ZELDITCH, M. L. 1988. Ontogenetic variation in pat-
terns of phenotypic integration in the laboratory rat.
Evolution 42:28-41.

Received 25 May 1995; accepted 27 December 1995
Associate Editor: Paula Mabee

APPENDIX

PCA

Classical PCA deals with observations in a single
group, i.e, with a p-variate random vector X = (X,,
X,, ..., X,) with covariance matrix %. The PCs, U =
u, u, ..., u,), are linear combinations of the origi-
nal variables, U = XB. This transformation is achieved
by the matrix of eigenvectors, B, which is orthogonal
and normalized so that B’ = L.

The covariance matrix of the PCs,

Cov(U) = B'SB = A,

is diagonal because the PCs are uncorrelated, i.e,

A, 0 - 0
A=|O 0
0 0 - A

P

The eigenvalues A\, \,, ..., \, are the variances of the
corresponding PCs (for further information, see Pi-
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mentel, 1979; Jolliffe, 1986; Flury, 1988: chapter 2; Jack-
son, 1990; Jobson, 1992).

CPCs for Independent Groups

The CPC model for independent groups (Flury,
1988) assumes that all groups share the same eigen-
vectors. This means that the transformation given by
the common matrix of eigenvectors, 8, renders all co-
variance matrices to diagonal form simultaneously,

BEB=A, i=1...,k

where the A, are diagonal matrices (as above) and k
is the number of groups.

CPCs for Dependent Random Vectors

The CPC model for dependent random vectors con-
siders kp variables simultaneously, which have a kp X
kp covariance matrix that shows a pattern of k X k
blocks, each of size p X p (shown here for k = 2):

211 2‘12
221 222 '

The diagonal blocks 3;; and 2,,, are the within-group
covariance matrices (as in the previous section),
whereas the off-diagonal blocks contain covariances of
measurements in different groups (%, = 2';).

The CPC model assumes that the same transfor-
mation (using the p X p orthogonal matrix B), when
applied to all groups, simultaneously renders all
blocks diagonal. Therefore, the covariance matrix after
transformation to CPCs is

B/EIIB B’EIZB All A12
B'ZaB B'ZnB| |An Ay

where all A, are diagonal. This model was discussed
in detail by Neuenschwander (1991) and Flury and
Neuenschwander (1995a); algorithms for estimating
CPCs were presented by Flury and Neuenschwander
(1995b).

’

Number of Parameters

The number of parameters in the unconstrained
model is

pk(pk + 1)/2.

Under the CPC model for dependent random vectors,
this number is

plp — 1)/2 + pk(k + 1)/2,

where the first term accounts for the CPC coefficients
and the second term for the within-group variances
of the CPCs and their covariances across groups. As
p and k increase, the reduction in parameters under
the CPC model becomes very substantial.

Estimation of CPCs

In a sample, the kp X kp covariance matrix S is pat-
terned as explained above for % (again illustrated for
k=2),ie,
Sll SlZ
SZI SZZ
Then we search for an orthogonal p X p matrix B (nor-
malized so that B'B = 1) that simultaneously renders

the four blocks of F as closely to diagonal as possible,
where

S =

F, F, B’'S;,B B’'S,,B
F, E, B'S,,B B’'S,B
is the covariance matrix of the transformed variables.

The measure of deviation from simultaneous diag-
onality is

F =

diag F,;
diag F,,

diag F,,

det[ diag F,,

e = ’

F, F
det|n tr
Fy Fp

where “det” is the determinant of a matrix and the
““diag” operator sets the off-diagonal elements of a
matrix to zero. It can be shown that e is a minimum
if all F, are diagonal. The FG* algorithm (Flury and
Neuenschwander, 1995b) is designed to find an or-
thogonal matrix B that minimizes this measure (for
further discussion, see Neuenschwander, 1991; Flury
and Neuenschwander, 1995a, 1995b).






