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Abstract: Approximately two decades after the first pioneering analyses, the study of shape 

asymmetry with the methods of geometric morphometrics has matured and is a burgeoning 

field. New technology for data collection and new methods and software for analysis are 

widely available and have led to numerous applications in plants and animals, including 

humans. This review summarizes the concepts and morphometric methods for studying 

asymmetry of shape and size. After a summary of mathematical and biological concepts of 

symmetry and asymmetry, a section follows that explains the methods of geometric 

morphometrics and how they can be used to analyze asymmetry of biological structures. 

Geometric morphometric analyses not only tell how much asymmetry there is, but also 

provide information about the patterns of covariation in the structure under study. Such 

patterns of covariation in fluctuating asymmetry can provide valuable insight about the 

developmental basis of morphological integration, and have become important tools for 

evolutionary developmental biology. The genetic basis of fluctuating asymmetry has been 

studied from empirical and theoretical viewpoints, but serious challenges remain in this area. 

There are many promising areas for further research that are only little explored at present.  

Keywords: developmental instability; directional asymmetry; evo-devo; fluctuating 

asymmetry; geometric morphometrics; morphological integration; Procrustes superimposition; 

shape; symmetry 
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1. Introduction 

Studies of fluctuating asymmetry have long primarily used measurements of lengths or perhaps angles 

on the left and right sides of organisms [1–6]. More recently, however, many new tools have been 

developed in the field of geometric morphometrics [7–10], including methods for studying asymmetry 

of shape [11–14]. These methods have been used increasingly for studies of fluctuating asymmetry in a 

wide range of organisms. 

To some extent, the results from asymmetry studies using geometric morphometrics have confirmed 

the findings from studies with traditional morphometric methods focusing on length measurements and 

similar measures of size [2–5]. In other instances, however, the results from analyses of shape asymmetry 

differ considerably from those of size asymmetry. For instance, studies of size measurements have found 

directional asymmetry only sporadically, whereas directional asymmetry for shape appears to be nearly 

ubiquitous in all animals that have been examined in sufficiently large studies [15].  

Geometric morphometric methods have also brought some significant conceptual changes and 

additions to the field. Geometric morphometrics is therefore not just a set of new analytical tools to 

address the same questions that have always been the focus of asymmetry studies, but they have led 

investigators to ask new questions and to use fluctuating asymmetry in new research contexts, most 

notably for the study of developmental integration [11,16,17]. 

This article is a survey of geometric morphometric studies of fluctuating asymmetry. It reviews the 

concepts and methods that underlie these studies and compiles some of the results that have emerged 

from them. 

2. Symmetry 

Before considering asymmetry, it is helpful to think briefly about symmetry, because asymmetry is 

simply a deviation from symmetry. Symmetry of biological structures can be defined as the repetition 

of parts in different positions and orientations to each other. Such symmetry is a fundamental feature of 

the body plans of most organisms and of many of their parts.  

Most animals are bilaterally symmetric, with left and right sides that are mirror images of each other. 

Bilateral symmetry, however, is not the only type of symmetry in biological structures. In particular, 

plants show a wide variety of different kinds of symmetries in flowers and other organs [18–21]. This 

section gives a brief overview of some of this diversity and provides the fundamental concepts 

concerning symmetry that will be used throughout the paper. 

2.1. Types of Symmetry in Biological Structures 

Because symmetry of morphological structures is the repetition of parts in different positions and 

orientations, it is useful to consider the number and arrangement of repeated parts as a way to understand 

the different types of symmetry. For instance, the familiar bilateral symmetry of most animals is 

associated with the repetition of parts as pairs, located on the left and right sides as mirror images of 

each other. For each pair of parts, a reflection about the median plane maps the left part onto the right 

part and vice versa. Therefore, this reflection about the median plane is fundamentally important for 

bilateral symmetry and can be used to characterize it. 
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Other types of asymmetry are based on different arrangements of parts (Figure 1). Because these 

types of symmetry usually are more complex than bilateral symmetry, for instance because most include 

more than two parts, they are subsumed under the umbrella term “complex symmetry”—any type of 

symmetry other than bilateral symmetry. This term is useful because structures with complex symmetry 

require special methods for morphometric analysis [14], which are a generalization of the simpler 

methods routinely used for bilateral symmetry [11–13]. 

Reflection is not only important for bilateral symmetry, but also occurs in various types of  

complex symmetry. Disymmetry or biradial symmetry, where there are two perpendicular axes or planes 

of symmetry, is another type of symmetry that is widespread, for instance, in unicellular algae  

(Figure 1a) [22–24] or in many flowers, particularly in the Brassicaceae [25–29]. The two axes of 

symmetry can be different in developmental and functional aspects (left–right axis versus dorsal–ventral 

or adaxial–abaxial axes), which can be a focus of specific interest [23,24,27]. 

 

Figure 1. Some types of complex symmetry. (a) Reflection symmetry with two axes of 

symmetry (Micrasterias rotata, a unicellular alga); (b) Rotational (pinwheel) symmetry in a 

flower; (c) Translational symmetry (serial homology) of vertebrae in the spine of a fish;  

(d) Spiral symmetry of the chambers of a nautilus shell. Diagrams from [14]. 

Rotation is also involved in many symmetries, either alone, as in the rotational or “pinwheel” 

symmetry of some flowers (Figure 1b) or in combination with reflection, so that each of the parts is 

mirror-symmetric, as in the familiar radial symmetry of many flowers or in some invertebrate animals 

such as sea urchins and jellyfish. Each rotation has a center or axis and each rotation has an order, the 

number of repetitions of parts that are arranged around a full circle (e.g., Figure 1b shows a rotation of 

order 5, or 72° per step).  

A further possible arrangement is the repetition of parts along an axis, with a translation as the change 

between the repeated parts. Such translational symmetry is perhaps more familiar to biologists under the 

name serial homology. It occurs widely in the body plans of many animals that show segmentation in 

some form (e.g., the spine of vertebrates, Figure 1c) and also in many plants, where leaves and other 

organs are repeated along shoots. In these examples, translation is often combined with rotation  

or reflection. 

Spiral symmetries, where rotation and translation occur together with an expansion, is another type 

of symmetry that is frequently seen in morphological structures (e.g., the shells of snails and other 

mollusks, Figure 1d). These examples are not a complete enumeration of the many symmetries that are 
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found in morphological structures, but they represent the most widespread types and therefore are useful 

as an overview of the most important types.  

2.2. Mathematics of Symmetry 

There is an extensive and powerful mathematical theory concerning symmetry [30–33], which is 

crucial for understanding complex symmetries. This theory offers a formal definition of symmetry that 

relates closely to the ideas used intuitively in the preceding introduction of complex asymmetries.  

In particular, transformations play an important role in this theory. A transformation maps every point 

of an object onto some point in the plane or space of the object and is reversible (there is a transformation 

that can undo the effect of the first one; this is a one-to-one relation between the points before and after 

applying the transformation). Transformations with particular interest for symmetry are reflection, 

rotation and translation, which define the arrangement of repeated parts in a symmetric structure  

(Figure 1). Also, a further transformation that is quite important is the identity, the transformation that 

leaves every point unchanged (it could also be described as a rotation by 360° or as the result of two 

reflections about the same axis or plane).  

An object is symmetric if a transformation leaves the object unchanged. For instance, reflection about 

the median plane leaves a bilaterally symmetric structure unchanged. Similarly, in Figure 1b, a rotation 

by 72° (or by 144° or 216° …) leaves the flower looking the same. The transformations that leave the 

object unchanged are called its symmetry transformations.  

The symmetry of an object can be characterized by the set of all its symmetry transformations. This 

is a set with some special properties, called a group, and therefore is called the symmetry group. Each 

type of symmetry has its characteristic symmetry group [30–33]. 

One of the properties of symmetry groups is that the result of combining two transformations in the 

group (or also just one with itself) is also a transformation contained in the symmetry group. For instance, 

if we combine a rotation by 72° and one by 144°, the resulting rotation by 216° must also be in the 

symmetry group. For this example with rotation of order 5, it follows that the symmetry group will 

contain the rotations by 72°, 144°, 216°, 288° and by 360° (or 0°, the identity). In this case, once we 

have come full circle, any further combinations will just yield rotations already included in the set, so 

these five rotations are sufficient for the symmetry group.  

For bilateral symmetry, the symmetry group clearly contains the reflection about the median plane. 

If we combine this reflection with itself, that is, if we perform the reflection twice in a row, the result is 

the original position. Therefore, the symmetry group for bilateral symmetry contains the refection and 

the identity. 

Symmetry groups can also combine rotations and reflection. The symmetry group of the equilateral 

triangle is such an example (Figure 2). In this case, the rotation is of order 3, or by 120°, which means 

that the symmetry group also includes rotations by 240° and by 360° (or 0°, the identity again). Each of 

these rotations can further be combined with a reflection (Figure 2; this changes whether the corners of 

the triangle are labeled in clockwise or counter-clockwise order). Because each rotation can either occur 

with or without the reflection, the symmetry group includes six transformations in total (Figure 2). 
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Figure 2. Symmetry group of the equilateral triangle. There are six symmetry 

transformations in the symmetry group: the rotations by 120°, by 240°, and by 360° (or by 

0°, which is the identity), each with or without a reflection. From [14]. 

Note that not all symmetry groups have a finite number of transformations, where there is only a 

certain set of symmetry transformations, and combining these transformations in any conceivable way 

always yields transformations already included in that set. Consider the example of Figure 1c, the 

translation symmetry of the spine, there the possible transformations are moving forward by one vertebra 

or moving backward by one vertebra. If we repeatedly apply one of these, we never return to the same 

transformation because we always can add one more step, and then another and another. Of course, in 

the example (Figure 1c) we’ll run out of vertebrae at either the anterior or posterior end of the spine, but 

that only tells us that the spine as a whole is not really symmetric under translations. Symmetry groups 

involving translation contain an infinite number of symmetry transformations. The same applies to spiral 

symmetry: in the nautilus shall (Figure 1d), it is possible to start at the center and then step along the 

spiral of the shell from chamber to chamber, but this sequence never ends because it could always be 

repeated one more time. The distinction between these finite and infinite symmetry groups is relevant 

for morphometric studies, namely, to determine which kinds of analyses can be used for different types 

of symmetry. 

2.3. Matching Symmetry and Object Symmetry 

For the analysis of asymmetry of shape, it is useful to make a further distinction between two kinds 

of symmetry or, perhaps more helpfully, two perspectives on symmetry. First, there is the type of 

symmetry where a structure is present as two separate copies, one on each side of the body, which are 

mirror images of each other. Familiar examples of this type of symmetry are human hands or insect 
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wings (Figure 3a). The axis or plane of symmetry runs between the two copies, but is not part of either 

copy. As a result, the arrangement of the two parts relative to each other is not an aspect of their 

symmetry. This type of symmetry is called matching symmetry [12,13], because the left and right copies 

can be moved and matched to each other, for instance, by putting the palms of the left and right  

hands together.  

 

Figure 3. Matching symmetry and object symmetry. (a) Matching symmetry. There are 

two separate copies of the fly wing, and the axis of symmetry passes between them;  

(b) Object symmetry. The face is symmetric in itself, and the axis of symmetry runs through 

it. From [13]. 

The alternative is object symmetry, where the object of interest is symmetric in itself [12,13]. For 

instance, the human face is symmetric because its left and right halves are mirror images of each other 

(Figure 3b). For structures with object symmetry, the axis or plane of symmetry runs through the 

structure. Therefore, the relative arrangement of the two halves is an integral aspect of the symmetry of 

the whole structure. 

This distinction has important implications for analyses of asymmetry. For matching symmetry, the 

possibility of matching together the left and right copies also offers a straightforward method for 

characterizing asymmetry: try to match the left and right copies together as well as possible, and the 

remaining differences are due to asymmetry. For object symmetry, the situation is slightly more complex 

because the left and right halves must be compared as part of the whole structure, but an elegant method 

uses a superimposition of the original and a mirror-image copy of the object for characterizing symmetry 

and asymmetry (Section 4.3, below). Object symmetry is important for morphometric studies even if 

asymmetry is not the focus of interest, because left and right halves of the structure are interdependent, 

which potentially can cause problems for analyses [34]. For structures with object symmetry, 

investigators therefore should always use methods that take the symmetry into account [12,13].  
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Distinguishing matching symmetry and object symmetry is easy in most cases. The key question is 

whether the median axis or plane is passing between the left and right halves so that it leaves them free 

to move relative to each other, or whether it goes through the structure so that the two halves are linked 

together solidly. Usually, this question is easy to answer and it is thus clear which type of analysis should 

be used. In rare cases, however, both analyses can be informative in combination—for addressing some 

specific question in studies of asymmetry, it can be useful to conduct analyses for object symmetry for 

the whole structure and separate analyses for matching symmetry of the halves [35]. 

The distinction between matching and object symmetry is particularly important for how size 

differences between the left and right sides are treated. For matching symmetry, a difference in the size 

of left and right copies results in an asymmetry for centroid size, but it has no necessary implication for 

the asymmetry of shape, unless they happen to be correlated. The asymmetries of size and of shape are 

two logically separate issues, which can be addressed in separate analyses. By contrast, for structures 

with object symmetry, a difference in size between the left and right halves is an aspect of the shape of 

the whole structure (e.g., imagine that one half of the face in Figure 3b is smaller than the other: this 

difference will be an feature of shape of the whole face). For object symmetry, because the entire 

configuration is considered as a whole and not as the two halves separately, all asymmetries between the 

left and right halves are aspects of shape of the whole configuration [13]. For this reason, studies of 

asymmetry in structures with matching symmetry normally carry out separate analyses of asymmetry 

for centroid size and for shape, whereas studies in structures with object symmetry conduct analyses of 

asymmetry only for shape. 

I have focused on bilateral symmetry to introduce matching and object symmetry, but both apply as 

well for complex symmetries [14]. Matching symmetry applies to all possible types of symmetry. It 

consists of considering the repeated parts that make up the structure separately, without considering their 

relative arrangement to one another. For instance, for studying the symmetry and asymmetry in a flower, 

an analysis of matching symmetry might divide the flower into its petals and then analyze the similarities 

and differences among petals. By contrast, object symmetry considers the structure as a whole, including 

the relative arrangement of parts. For the flower example (Figure 1b), an analysis of object symmetry 

would consider the flower as a whole and the relative positions of the petals would be important aspects 

of symmetry and asymmetry. The flower in this example is symmetric as a whole because a rotation by 

72°, or by a multiple of 72°, leaves the flower unchanged. Likewise, the algal cell in Figure 1a has object 

symmetry because reflections about either the vertical or horizontal axes (or the combination of both 

reflections, a rotation by 180°) leave the cell unchanged. Whereas the perspective of matching symmetry 

is feasible for all possible types of symmetry, there are some types of symmetry for which object 

symmetry is not applicable, namely the symmetries that have infinite symmetry groups [14]. In practice, 

this means that analyses of object symmetry are not possible for symmetries like translational or spiral 

symmetry (Figure 1c,d): there are clearly problems with the comparisons at the ends of the spine or shell. 

For these types of symmetry, matching symmetry is the only available approach. 
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3. Distributions of Asymmetry 

Traditionally, three types of asymmetry have been distinguished according to the distribution of  

left–right differences in a population: directional asymmetry, fluctuating asymmetry, and antisymmetry 

(Figure 4) [1,2]. These types most often have been applied in analyses of scalar measurements, for 

instance lengths, angles, or counts of structures such as bristles, but they can be applied similarly to 

multidimensional features such as shape. In a seminal paper that laid the foundation for many modern 

studies of asymmetry, including this distinction, Van Valen (page 126 in [1]) stated clearly that these 

three types of asymmetry are not mutually exclusive categories, but can occur together in the same trait.  

 

Figure 4. Frequency distributions of left–right differences typical for three main types 

of asymmetry. (a) “Pure” fluctuating asymmetry. The left–right differences follow a  

bell-shaped distribution with a mean of zero (no directional asymmetry); (b) Directional and 

fluctuating asymmetry. The left–right differences are distributed around a mean that is 

different from zero, indicating directional asymmetry. The scatter of individual left–right 

differences around this mean is fluctuating asymmetry (c) Antisymmetry. The distribution 

of left–right differences is bimodal, indicating that most individuals are clearly asymmetric, 

but can be left- or right-biased. The units on the axes of the plots are arbitrary. 

Directional asymmetry, fluctuating asymmetry and antisymmetry are observable patterns in the 

distribution of left–right differences in populations of organisms. Because three types of asymmetry are 

defined in a population, not for single individuals, identifying and separating the three categories requires 

measurements of many individuals. The types of asymmetry have different statistical properties as well 

as distinct biological origins and implications. 

It is also worth remembering that these patterns of asymmetry are observable manifestations of 

biological processes, but that they are not the processes themselves. Inference from the patterns of 

asymmetry to biological processes is very limited and usually requires additional evidence. 

In keeping with the bulk of the literature on shape asymmetry, most of the discussion in this section 

will focus on bilateral asymmetry, which is much more widespread than any of the types of  

complex asymmetry. The general concepts, nevertheless, apply to complex symmetry in the same way. 

Some special aspect of morphometric analyses of complex symmetry will be discussed below in a special 

section, which will also provide an overview of empirical results from studies of this kind (Section 4.6). 
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3.1. Directional Asymmetry 

Directional asymmetry is a tendency for a trait to be consistently developed in different manners on 

the left and right body sides. Directional asymmetry can be quantified by the difference between left and 

right averages. The difference between left and right sides may be large or small, but the average  

left–right difference differs from zero. 

The prime example of directional asymmetry is the arrangement of internal organs in most animals, 

including humans, where the heart is on the left side, the intestine is coiled in a constant and asymmetric 

manner, and other organs such as the lungs or liver are also asymmetric in a consistent way. The  

mirror-image arrangement of all internal organs, situs inversus, is rare in humans and heterotaxy, or situs 

ambiguus, is also a rare condition in humans where only some but not all internal organs occur in  

mirror-image orientation and is associated with malformations and causes serious morbidity or mortality 

in affected persons [36]. 

Most traits assessed by traditional morphometric methods have shown no significant directional 

asymmetry, so that it was long considered a phenomenon that sporadically occurs in some traits, but is 

not a regular feature of many organisms [2]. Occasionally, directional asymmetry has been reported for 

various linear measurements in diverse animals including insects [37] or humans [38,39]. 

With the advent of geometric morphometric methods in the 1990s, subtle but statistically significant 

directional asymmetry has been found virtually in every early study of shape asymmetry [11,40,41] and 

has been recognized as a real and possibly widespread phenomenon [15]. More recently, dozens of 

studies in a wide range of different animal taxa have found statistically significant directional asymmetry 

of shape [13,16,42–110]. Even in snails where morphs with opposite directions of shell coiling occur 

within populations, a subtle directional pattern of asymmetry is superimposed on the dimorphism, 

because the average shell shapes of the two morphs are not precise mirror images of each other [111–114]. 

Therefore, just as conspicuous directional asymmetry of internal organs is near-ubiquitous among 

bilaterian animals, it seems that, for a wide range of animals, even structures that seem superficially 

symmetric show a subtle directional asymmetry of shape.  

There appear to be remarkably few exceptions to this pattern. A few studies of shape in Drosophila 

found no significant directional asymmetry of wing shape [115–119] or mixed results [120–126], although 

a series of other studies did find it [15,16,54,56,62,77,85,123]. Similarly, one study on human skulls [127] 

found no directional asymmetry of shape, whereas several others reported directional asymmetry of the 

skull [47,68,84,86,90,94,109] and soft tissues of the face and ears [38,66,98,104,105,108]. Further  

non-significant results were reported from mites [128] and wings of Trichogramma egg 

parasitoids [129]—but both studies reported results only from relatively small subsamples  

(≤30 specimens per sample) and tiny organisms, raising questions about statistical power and possible 

artifacts from mounting very small specimens. Further negative results come from two datasets of wings 

from Chironomus midges [116], whereas other studies found mixed results for wings and larval 

mouthparts [103,130,131]. Some studies, in a variety of species, have found mixed results, with some 

structures or subgroups yielding significant results, but others not [132–138]. Because these studies with 

negative results are relatively few and some are based on relatively small samples, the question arises 

whether negative results really indicate the absence of directional asymmetry or whether they result from 

limitations of statistical power. Yet, there are other studies where negative results might reflect 
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differences in the biology of those organisms. A study of two parts of the predatory appendage of a 

mantis shrimp, carried out separately in males and females, found that only one of the four tests showed 

marginally significant directional asymmetry [139]. It is unclear whether this may relate to the 

sometimes accentuated antisymmetry of crustaceans [140], although no evident antisymmetry appears 

to occur in mantis shrimp. Overall, the vast majority of studies using geometric morphometric methods 

indicate that subtle, but measurable directional asymmetry of shape is very widespread in the  

animal kingdom.  

Directional asymmetry requires systematic developmental differences between the left and right 

sides. Such differences have been investigated extensively for the conspicuous directional asymmetries 

of internal organs that exist in most phyla of bilaterian animals, and a variety of molecular mechanisms 

have been found that can establish an initial distinction between left and right sides and transmit this 

information to developing organs [141–144]. Some of the mechanisms and the genes involved in 

producing directional asymmetry of internal organs seem to be highly conserved, suggesting that  

left–right asymmetry is an ancestral feature of bilaterian animals [141–144]. Clearly, with changes in 

body plans during evolution of different animal clades, the expression of directional asymmetry has 

changed as well. But it is plausible that developing organs in most animals possess the mechanisms 

necessary to sense on which body side they are positioned and can modulate development accordingly, 

potentially producing directional asymmetry. This directional asymmetry of shape may be conspicuous 

or it may require measurement and analysis with powerful statistical methods to be detected, but 

according to the available results it is very widespread. The possible functional and adaptive significance 

of directional asymmetry is unclear [15,145,146] and it is conceivable, for instance, that the subtle 

directional asymmetry of many external structures is a non-adaptive consequence of developmental 

constraints relating to the conspicuous directional asymmetry of internal organs. 

By contrast to animals, there are only few studies that use geometric morphometric methods to study 

asymmetry in plants. There are some reports of directional asymmetry of leaf shape [147], but there are 

also examples where no directional asymmetry was found [148]. Also, directional asymmetry has been 

found in flower shape [27,149]. More systematic searches are required before it is possible to assess how 

widespread directional asymmetry is in plants. 

3.2. Fluctuating Asymmetry 

Fluctuating asymmetry denotes small differences between the left and right sides due to random 

imprecisions in developmental processes [150]. If a morphological trait is expected, on average, to be 

expressed in a particular way under the control of a particular genome, under particular environmental 

conditions, and for the body side in question, a real trait will usually deviate by a greater or lesser amount 

from this expectation (or “target phenotype” [151]). These deviations exist because developmental processes 

are not entirely deterministic, but have an inherent component of random variation [150]. For an 

individual, the deviations of a trait from the target phenotype that occur on the two body sides will 

usually differ and therefore give rise to a degree of asymmetry. This random or residual component of 

asymmetry is fluctuating asymmetry [2,3,150]. 

A practical problem with this reasoning is that the target phenotype is normally not known, but must 

be estimated. If the target phenotype is estimated by the average of each side in a population of 
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genetically homogeneous organisms raised in the same environment, then fluctuating asymmetry can be 

obtained as the difference of each individual’s asymmetry from the average of directional asymmetry. 

In other words, fluctuating asymmetry is the individual variation of the left–right differences of trait 

values. This definition has the advantage that it is easy to integrate into a statistical framework for 

analyses of fluctuating asymmetry [2,152–156]. 

Fluctuating asymmetry of a scalar-valued trait usually is associated with a bell-shaped distribution of 

left–right differences (e.g., Figure 4a). Some authors have suggested that this should be a normal 

distribution and that tests of kurtosis might be useful to distinguish fluctuating asymmetry from 

antisymmetry or for making inferences about underlying biological processes [1,155–159]. The 

assumption that fluctuating asymmetry follows a normal distribution is widely accepted but there is 

surprisingly little justification for it. Palmer and Strobeck ([157], p. 59) explain that a normal distribution 

of left–right differences emerges if the deviations from the target phenotype are the result of many small 

random effects that are additive and independent of one another. This is a biological translation of the 

central limit theorem from statistics. Whereas it is plausible that developmental fluctuations are random 

in their directions, it is doubtful that they are additive and independent, because nonlinear (non-additive) 

processes and mutual interdependence are prominent features of developmental processes [150,160]. 

Empirical comparisons of the distributions of left–right differences to different parametric distributions 

have yielded variable results [161–164]. While this information certainly useful for the statistical 

analysis of specific datasets, such comparisons also raise the question what insight into the underlying 

biological processes can be gained from knowing that the asymmetries follow a particular type of 

parametric distribution. This kind of question is particularly relevant for analyses of shape. Very little is 

known about the characteristics of distributions of shape asymmetry. Therefore, for the time being, it 

seems advisable to avoid inferences that make any assumption about the specific distribution of  

shape asymmetry.  

Many studies have used fluctuating asymmetry as a measure of developmental  

instability [2,3,150,153,155,165] and have tried to correlate it with measures of exposure to stress or 

other adverse conditions, inbreeding or hybridization, or fitness. Developmental instability is the amount 

of variation among structures for which the same target phenotype is expected: it is the result of 

imprecision of developmental processes and therefore a measure of developmental regulation. Because 

the left and right sides of the same organism share the same genome and usually nearly the same 

environment, organs on the left and sides can be expected to share the same target phenotype (assuming 

that there is no directional asymmetry) and therefore differ only by developmental instability. This 

reasoning is based on a number of assumptions, which will be discussed below (Section 5.1). Whether 

fluctuating asymmetry, following this reasoning, is indeed a good measure of developmental instability 

and whether it correlates with exposure to adverse conditions or genetic challenges are questions that 

continue to be debated. In this paper, these questions will be addressed to the extent they have been used 

in studies using geometric morphometrics (Sections 4.5 and 5). 

A different type of application of fluctuating asymmetry is used mostly within the framework of 

geometric morphometrics. This is to use fluctuating asymmetry for inferring the developmental origins 

of integration within or between morphological structures [17,166]. The reasoning behind the method is 

that fluctuating asymmetry originates from random variation in developmental processes. Therefore, 

traits that develop separately from each other will have no correlation in their asymmetries. For the 
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asymmetries of two traits to be correlated, there needs to be a developmental interaction between the 

precursors of the traits, so that the effects of developmental fluctuations can be transmitted between 

traits. If there is no such developmental interaction, the asymmetries of the two traits will be 

uncorrelated. Analyses of covariation in the asymmetries of landmark configurations thus can be used 

to infer whether such developmental interactions exist (Section 6). This approach has been applied in a 

growing number of studies [11,16,44,49,51,56,59,63,67,72,74,75,78,79,82,139,167–174]. 

A somewhat different perspective is to use the comparison of patterns of covariance for fluctuating 

asymmetry and for variation among individuals to infer whether the same processes are contributing to 

developmental stability and canalization [42,175,176]. Developmental stability is the ability of the 

developmental system to achieve a phenotype close to the target despite fluctuations in developmental 

processes. In other words, it is a type of developmental buffering that counteracts the effects of random 

developmental variation. Similarly, canalization is a kind of developmental buffering against the effects 

of variation in environmental conditions or genetic variation. Whether the same processes provide 

buffering against both kinds of variation or whether distinct processes act against intrinsic or extrinsic 

variation clearly is an important question (Section 5.2). The studies that have used geometric morphometrics 

to address this question have produced mixed results [42,54–56,62,73,117,124,135,177,178]. 

In summary, the use of geometric morphometrics in studies of fluctuating asymmetry both has 

provided new methods for studying questions that were already addressed in studies of fluctuating 

asymmetry in traditional traits such as length measurements [2,3] and it has opened up new directions 

of research addressing questions concerning subjects such as morphological integration [179]. 

3.3. Antisymmetry  

Antisymmetry is a pattern of asymmetry where most individuals are asymmetric, but differ in the 

directions of the asymmetries so that there is a mix of “left-sided” and “right-sided” individuals. As a 

result of this mix, the distribution of left–right differences may be bimodal (Figure 4c). Weaker cases of 

antisymmetry, with smaller asymmetries, may not produce a clearly bimodal distribution. Indeed, it 

seems reasonable to envision a gradual transition between antisymmetry and fluctuating asymmetry. 

Several authors have pointed out that antisymmetry requires some sort of negative correlation or 

feedback between trait values on the left and right sides [1,140,180], whereas there is no such correlation 

for fluctuating asymmetry. The continuous transition between antisymmetry and fluctuating asymmetry 

therefore can be seen as corresponding to a gradual change from a strong negative correlation towards a 

correlation of zero. 

Antisymmetry is quite widespread in animals and plants. Palmer [140] assembled an extensive review 

of antisymmetry and reported numerous examples from many animal phyla. Well-known examples 

include snails with dextral and sinistral morphs, differing in the direction of shell coiling, and many 

crustaceans such as fiddler crabs, which have claws of two very different sizes. A morphometric analysis 

of fiddler crab claws showed that the major and minor claws differ very clearly within a species [181]. 

This separation of major and minor claw shapes also holds in a separate analysis at the evolutionary 

level, comparing species averages of claw shapes across the genus [182]. 

Antisymmetry can be combined with a directional component of asymmetry. It manifests itself in a 

difference between the average phenotypes of each morph and the mirror image of the other morph. 
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Such differences have been found for snail shells in species with dimorphism due to sinistral and dextral 

coiling [111–114] as well as for the “left-sided” and “right-sided” forms of the European flounder [183]. 

Some studies have found that antisymmetry can be fairly difficult to demonstrate with geometric 

morphometrics, even in famous examples such as the orientation of the mouth in scale-eating cichlid 

fish [184]. Different studies found either bimodal [184,185] or unimodal [186,187] distributions of 

measures of asymmetry in the mouth region. Also, there is evidence that the distribution of asymmetry 

in larvae is unimodal [188] and that both genetic factors [188,189] and plasticity [186] influence the 

asymmetry of the mouth in adults. Accordingly, multiple factors need to be considered in the design of 

studies, data collection and analysis, which may partly account for the discrepancies in the results. 

A remarkably clear example of antisymmetry was found in a morphometric analysis of leaf shapes of 

the plant Montrichardia linifera (Araceae), where multivariate analysis revealed two distinct clusters in 

the leaf asymmetry [190]. These clusters were not due to differentiation between populations, but the 

division occurred within populations, indicating a consistent bimodal distribution of asymmetry in  

leaf shape. 

Subtle antisymmetry might be fairly widespread in plants, because leaf asymmetry relates to leaf 

phyllotaxis [191], the arrangement of leaves along the shoot. In the shoot meristem, where there leaves 

originate, leaf primordia are arranged in a spiral, and each primordium therefore has one side that faces 

up the spiral and one side that faces down the spiral. The directions up and down the spiral correspond 

to local differences in auxin concentrations, a plant hormone that has a powerful and lasting effect on 

leaf development [191]. Depending on whether the spiral has a clockwise or counter-clockwise direction, 

the directions up or down the spiral are the left or right sides of the developing leaves. Morphometric 

analyses of the shape of mature leaves in tomato and Arabidopsis showed differences in leaf asymmetry 

between shoots with clockwise and counter-clockwise phyllotaxis, and experiments showed that the 

differences in auxin concentration were indeed responsible for such asymmetries [191]. These results 

provide an elegant demonstration of a mechanism that can generate antisymmetry in plant structures, 

provided populations contain a mix of plants with meristems spiraling in a clockwise and counter-clockwise 

direction. It is not clear how widespread such asymmetries of plant organs are, but the developmental 

mechanism that was demonstrated should be widely applicable. 

4. Geometric Morphometrics 

Geometric morphometric methods, which were invented repeatedly at different times during the 20th 

century [192,193] but became widely known and used only since the 1990s [7,194,195], have recently 

become an important research tool for evolutionary and developmental biology and allied fields in the 

life sciences [8–10]. They offer a rigorous and flexible approach for quantifying morphological variation, 

which can also be used for quantifying asymmetry. The statistical methods for studying fluctuating 

asymmetry [2,153,155], mostly developed for single measurements such as lengths or angles, can be 

extended in a fairly straightforward manner to a multivariate framework, as it is required for analyses of 

shape [11,13]. As a benefit, the results from such analyses come with the various options for visualizing 

results that are a central component of geometric morphometrics [196]. Moreover, studies of fluctuating 

asymmetry in the context of geometric morphometrics have stimulated the development of new 

approaches and applications, such as methods for morphometric analyses of complex symmetry [14] and 



Symmetry 2015, 7 856 

 

 

the use or fluctuating asymmetry as a tool for investigating the developmental basis of morphological 

integration [17,166]. 

All the main methods in geometric morphometrics are based on an explicit geometric definition of 

shape: shape encompasses all the geometric features of an object except for its size, position and 

orientation [7]. Features that are aspects of shape include proportions, angles, and the relative 

arrangement of parts in a structure. The geometric definition provides a clear logical separation between 

size and shape: size and shape are conceptually distinct from each other, although they may be correlated 

in biological data. For studies of asymmetry, analyses of size can use the traditional methods developed 

for measurements of lengths [2,153,155]. By contrast, because of the multifaceted nature of shape, 

analyses of asymmetry of shape require multivariate extensions of these methods. Analyses of 

asymmetry of size and of shape are distinct from each other, focusing on complementary aspects of 

morphological variation, and can provide different results. It is often sensible to conduct analyses for 

both size and shape as different parts of the same study. 

There have been a few studies using alternatives to the Procrustes methods that are the main  

focus of this article, such as Euclidean distance matrix analysis (EDMA), in which all the pairwise 

distances between landmarks are considered [197,198]. Methods for studying fluctuating  

asymmetry using this approach have been developed [199], but have been used in only relatively few 

studies [38,39,47,52,68,138,178,200,201]. The vast majority of studies, however, have used Procrustes 

approaches and this review therefore is focusing mainly on these.  

This section reviews the principal concepts and methods of geometric morphometrics primarily as 

they apply to the study of fluctuating asymmetry of shape.  

4.1. Landmarks, Procrustes Methods, and Shape Spaces 

Landmarks are points that can be located precisely and correspond in a one-to-one manner among all 

the specimens included in a study. If the landmarks cover most of the important anatomical parts in a 

structure, the relative positions of the landmarks can provide a concise and reasonably complete 

characterization of the main features of shape in a morphological structure. The coordinates of the 

landmarks contain all the information that is needed to characterize these relative positions. Therefore, 

a set of pairs (for data in two dimensions, or 2D) or triplets (for three dimensions, 3D) of numbers is 

sufficient to summarize the morphology of a specimen. Different specimens are described by collecting 

the coordinates of the same set of landmarks on every specimen in the sample. This set of landmarks is 

therefore crucially important for all comparisons across specimens. 

Collecting coordinates of the same set of landmarks in all specimens implies that the investigator 

makes decisions about the correspondence of points among specimens in the sample. Because the 

coordinates of the landmarks serve as variables in the subsequent analyses, it is important that each 

variable is a coordinate of the same point for all the specimens in the sample. This correspondence of 

landmarks, or homology in the context of comparative evolutionary studies, is a central assumption of 

geometric morphometric methods [9], even for semilandmarks and similar methods that use points 

selected along a smooth outline or surface [104,202–205]. Because fluctuating asymmetry is usually 

investigated within populations and the scale of variation is normally relatively small, correspondence 

of landmarks tends to be a less serious problem than in studies of evolutionary or ontogenetic variation. 
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Nevertheless, occasionally there can be considerable differences even between left and right sides of the 

same individual or among individuals, which should be taken into account when the landmarks are 

defined at the outset of a study. 

To extract the shape information from the data, the Procrustes superimposition (or Procrustes fit) can 

be used [7,9,206,207]. This approach is so widespread in geometric morphometrics that a recent review 

of the field [10] has labeled the current framework of morphometric methods as the “Procrustes 

paradigm”. It is also at the core of methods for analyzing asymmetry of shape [11,13]. Most often, the 

Procrustes superimposition is explained as a method for removing the components of variation that are 

not part of shape from the coordinate data, but there is an alternative and equally important explanation 

that sees it as a tool for obtaining a local linear approximation of Kendall’s shape space [7,208,209]  

for the data at hand. Because of the central role of the Procrustes fit in geometric morphometrics,  

I briefly present both explanations and some additional facts that are important for understanding 

geometric morphometrics. 

The Procrustes superimposition aims to extract shape variation by eliminating the non-shape 

components of variation, that is, size, position and orientation. There are two types of Procrustes fit: the 

ordinary Procrustes superimposition, where one configuration (I will call it the movable configuration) is 

fitted onto another (target) configuration, and the generalized Procrustes superimposition, where 

multiple configurations are fitted onto a common consensus or average configuration.  

The ordinary Procrustes superimposition eliminates differences in size, position and orientation 

between the movable and target configurations in a step-by-step procedure (Figure 5). First, both 

configurations are scaled to the same size (Figure 5a). The measure of size that is used is centroid  

size [7], the square root of the sum of squared distances of all the landmarks to their center of gravity 

(the centroid; the point whose coordinates are the averages of the respective coordinates of all the 

landmarks). Centroid size can be viewed as a measure of spread of the landmarks around the center of 

gravity. Second, the movable configuration is shifted so that it has the same center of gravity as the target 

configuration (Figure 5b). Finally, the movable configuration is rotated until the sum of squared 

distances between corresponding landmarks in the two configurations is minimal. In other words, this 

procedure eliminates variation in size, position and orientation to find an optimal fit, using the sum of 

squared distances between corresponding landmarks as the optimality criterion. 

The sum of squared distances between corresponding landmarks of the optimally superimposed 

configurations reflects the discrepancies in shape between the configurations. It is that amount of 

difference between configurations that cannot be removed, no matter how the configurations are aligned 

relative to each other. Therefore, it can be used as a measure of the shape difference between the two 

configurations. The sum of squared distances between corresponding landmarks can itself be viewed as 

a squared distance (this extends the use of the Pythagorean theorem, normally used to sum up squared 

coordinate differences to obtain a squared distance, to sum up squared differences across all landmarks). 

The square root of the sum is called the Procrustes distance between the shapes of the configurations [7]. 
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Figure 5. Procrustes superimposition. The figure shows the three transformation steps of 

an ordinary Procrustes fit for two configurations of landmarks. (a) Scaling of both 

configurations to the same size; (b) Transposition to the same position of the center of 

gravity; (c) Rotation to the orientation that provides the minimum sum of squared distances 

between corresponding landmarks. 

The ordinary Procrustes fit explained above (Figure 5) can be used to superimpose two configurations 

of landmarks. But what if there are more than two configurations? In that case, an iterative procedure of 

repeated ordinary Procrustes fits is used, which is called a generalized Procrustes fit [7,206,210]. In a 

first round, one configuration (e.g., the first one in the dataset) is chosen as the target configuration and 

every other configuration is superimposed on it. A consensus configuration is then computed by 

averaging the superimposed configurations (including the one used as the target) and rescaling this 

average to have a centroid size of 1.0. This consensus is then used as the target configuration in a second 

round, where every configuration in the dataset is fitted to the consensus, and a new consensus is 

computed as the average of the superimposed configurations (this time without the target, because it is 

not one of the landmark configurations in the dataset) and rescaled to a centroid size of 1.0. This 

procedure is repeated until the consensus is no longer changed, which usually happens after a few rounds 

(often, as few as two or three rounds are sufficient). The result of the procedure is a set of configurations 

that are superimposed as closely as possible to their overall average shape. The landmark coordinates of 

the superimposed configurations (called Procrustes coordinates) contain the complete information on 
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shape variation in the data. Therefore, these coordinates can be used as shape variables in multivariate 

analyses to address a wide range of research questions. 

Removing variation in size, position and orientation also has an effect on the dimensionality of the 

variation. For each landmark, the original data contain two coordinates for 2D data or three coordinates 

for 3D coordinates. Therefore, the total dimensionality of the data is two or three times the number of 

landmarks (imagine the data in a coordinate system in which all the landmark coordinates are separate 

dimensions). Because the Procrustes fit imposes a standard size, position, and orientation, the landmark 

coordinates cannot vary in every possible way, but there are some restrictions. These restrictions can be 

described as a loss of degrees of freedom or a loss of dimensionality of the data, and as such they can be 

counted. Removing variation in size comes at a cost of one dimension. Removing variation in position 

causes a loss of one dimension per coordinate, that is, two dimensions for 2D data and three dimensions 

for 3D data. Finally, removing variation in orientation removes one dimension for 2D data, because there 

is one angle of rotation, but it removes three dimensions for 3D data, because there are three rotations 

(about the anterior–posterior, dorsal–ventral, and left–right axes). In total, therefore, four dimensions are 

lost for 2D data and seven dimensions are lost for 3D data. This has practical implications for 

subsequent analyses.  

Kendall’s shape space, for a particular number of landmarks in either two or three dimensions, is the 

multidimensional space in which there is a point for every possible shape and where the distances 

between points are the Procrustes distances between the corresponding points. The dimensionality is that 

of the Procrustes-superimposed data: for k landmarks, it is 2k–4 for 2D data and 3k–7 for 3D data. For 

triangles, for example, Kendall’s shape space happens to be the surface of a sphere (Figure 6; this is true 

for both 2D and 3D data, because three points are always in a plane, no matter how many coordinates 

are used to specify their positions). The surface of the sphere is two-dimensional, corresponding to the 

dimensionality of the shape data, but it is embedded in a three-dimensional space. This is a feature shared 

with other shape spaces, for configurations with more landmarks, which are also multidimensional 

curved surfaces (known in mathematics as manifolds), but tend to be much more complex and much 

harder to visualize than a sphere [7,208,209]. Each point in a shape space corresponds to one particular 

shape, and each possible shape corresponds to one point in the appropriate shape space (Figure 6). 

Kendall’s shape spaces are complex, but in practice, most analyses do not need to use them. Just as 

the curved surface of the Earth can be successfully approximated by a flat map, as long as it only covers 

a region that is small by comparison with the Earth’s radius, it is possible to approximate the shape space 

locally by a linear tangent space [7,206,211]. This raises the question whether shape changes encountered 

by morphometric studies are sufficiently small for the tangent space approximation to be successful. The 

answer, fortunately, is that biological data usually are quite concentrated in relatively small regions of 

shape space, even comparisons at large taxonomic scale involve shape variation that is sufficiently small 

for the tangent approximation to be remarkably exact [212]. That is particularly reassuring for studies of 

fluctuating asymmetry, which usually focus on fairly subtle shape differences. The projection from the 

shape space to tangent space is mathematically quite straightforward [7] and is done automatically by 

the widely used software packages for geometric morphometrics. The usual procedure uses the average 

shape, obtained by the Procrustes fit, as the point where the tangent space touches Kendall’s shape space, 

and then projects all the data points into this tangent space. The shape tangent space has exactly the 
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correct dimensionality (2k–4 for 2D data and 3k–7 for 3D data) and can be used with the standard 

methods of multivariate statistics.  

 

Figure 6. Kendall’s shape space for triangles. The diagram shows one half of the shape 

space from one of the two “poles” that can be defined by the location of the equilateral 

triangles. The six “meridians” drawn in the diagram are the locations of isosceles triangles 

(e.g., the vertical meridian contains those triangles where the left and right sides are equal). 

The “equator” of the sphere (outer blue circle) is the location for triangles where all three 

points lie on a single line. The opposite hemisphere, not visible in the diagram, contains 

shapes that are mirror images to those in the visible hemisphere. 

It is useful to ask how Kendall’s shape spaces and tangent spaces relate to the Procrustes 

superimposition. Recall that the shape space was defined as a space in which the distances between 
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points are identical to the Procrustes distances between the corresponding shapes. Similarly, if the 

Procrustes coordinates from a generalized Procrustes fit of a set of configurations are used as a 

coordinate system, the Euclidean distances between data points are very nearly the same as the 

Procrustes distances between the shapes of the corresponding configurations. Therefore, the Procrustes 

superimposition, with the appropriate projection to the tangent space, provides a local linear 

approximation of Kendall’s shape space. No matter how many landmarks there are, and thus how 

complex Kendall’s shape space is as a whole, the Procrustes fit and tangent projection provide a good 

approximation of the relative arrangement of the data in the relatively small patch of the shape space 

that contains the actual data. The investigator therefore does not need to deal with the complexity of the 

entire shape space, but still obtains all the information that is relevant to the data at hand. 

Perhaps it is most helpful to think of the Procrustes superimposition in terms of this second 

explanation. It is not just a method to extract shape information from coordinate data by removing the 

variation of size, position and orientation, but it also provides a local approximation of the shape 

(tangent) space in the neighborhood of the data. It is important to note that this somewhat abstract 

characterization of what the Procrustes superimposition does is central for understanding geometric 

morphometrics: it provides a direct link between the theoretical foundations such as Kendall’s shape 

space and the day-to-day application to real data. 

4.2. Morphometric Analysis of Matching Symmetry 

The analyses of shape in the context of matching symmetry use the tools of geometric morphometrics 

in a fairly straightforward way—the main question is what to do with the left and right copies of the 

landmark configurations. For matching symmetry (Figure 3a), the parts from the left and right sides can 

be moved relative to each other and their shapes can be compared. Asymmetry is manifest as the 

differences between the left and right copies, and it can be studied for size and shape separately. For 

studying asymmetry in the size of a morphological structure, the centroid size can be computed for the 

landmarks configurations from the left and right sides of each individual included in the study. Centroid 

size is a measure of overall size for which asymmetry can be analyzed with the same methods as for 

conventional measurements [2,153,155]. For shape, the comparison of left and right sides can be done 

with the Procrustes approach explained above, by computing differences of the landmark coordinates 

after a Procrustes superimposition of the configurations from both sides. 

For bilateral symmetry, the left and right copies of a morphological structure are mirror images of 

each other. Therefore, the landmark configurations from one body side (e.g., all configurations from the 

left side) need to be reflected before all the data can be entered in a Procrustes superimposition. Such a 

reflection can be done by simply changing the sign of one coordinate for all the landmarks (e.g., for all 

x coordinates; some software packages for geometric morphometrics do this reflection automatically). 

This reflection ensures that the landmark configurations from both sides fit together and that asymmetry 

of shape is separated from the shape difference that is due simply to the fact that the left and right sides 

are mirror images of each other. A joint Procrustes fit for all the left and right configurations provides a 

local approximation to the shape space as well as an alignment of specimens and common coordinate 

system in which shape variation and asymmetry can be examined [11,40,41,195]. Asymmetry of shape can 
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then be characterized as the differences between the two superimposed landmark configurations of 

each individual. 

To partition the total asymmetry into components of directional and fluctuating asymmetry, it is 

useful to recall the definitions of those types of asymmetry. Directional asymmetry is the mean 

asymmetry in the population, and therefore can be estimated as the average of individual left–right shape 

differences over all the individuals in the sample or, equivalently, as the difference between the average 

of all left configurations and the average of all right configurations. Fluctuating asymmetry is the 

variation of individual asymmetries around the average of directional asymmetry, and thus can be 

computed as each individual’s left–right shape difference minus the overall average of the left–right 

shape differences. Variation among individuals, what we tend to consider just as “shape” in day-to-day 

life, can be characterized by the variation among the averages of the left and right landmark configurations. 

To quantify these different components of variation, it is convenient to compute sums of squares by 

summing the squared deviations across the coordinates of all landmarks for a particular difference, and 

then taking the square root of the sum. Due to the properties of the Procrustes fit, the squared distances 

for individual variation and fluctuating and directional asymmetry add up to the total sum of squared 

deviations from the average shape that remained after the Procrustes fit. Therefore, the relative 

contributions of the different components of variation can be quantified separately. This topic will be 

explored in more detail below (Section 4.4). These computations, established in the 1990s in a series of 

studies [11,40,41,195], remain a fundamental basis for studies of asymmetry with the methods of 

geometric morphometrics. 

Because shape is a multidimensional feature, the results from analyses of shape asymmetry are 

somewhat more complex than the results of an analysis of asymmetry of traditional traits (or centroid 

size, which uses the same type of analysis as for traditional measurements). Whereas traditional analyses 

can characterize directional asymmetry, fluctuating asymmetry and individual variation as a single 

number each (the average left–right difference and the variances for fluctuating asymmetry and 

individual variation), these results are vectors or matrices for shape data. Directional asymmetry, for 

shape data, is a vector of coordinate differences that indicates the average shape change from the left to 

the right side (or vice versa). For instance, if the red and blue wings in Figure 5 correspond to the average 

shapes of the left and right sides, the coordinate differences of corresponding landmarks in the last 

diagram of the figure are the estimate of directional asymmetry. As a shape change vector, directional 

asymmetry has a magnitude, which can be quantified as the Procrustes distance between the average 

shapes for the left and right sides [11,40,41,195], but it also has a direction in shape (tangent) space, 

which reflects the relative magnitudes and directions of the displacements of landmarks. Both fluctuating 

asymmetry and individual variation concern variation in the sample, and both can therefore be 

represented as covariance matrices [11]. Because fluctuating asymmetry is the variation of individual 

asymmetries around the average of directional asymmetry, it can be characterized with the covariance 

matrix of the individual left–right differences (centered, to take into account directional asymmetry). 

Similarly, individual variation of shape can be represented by the covariance matrix of the individual 

left–right averages. The amounts of shape variation for fluctuating asymmetry and individual variation 

can be quantified as the Procrustes variance (or Procrustes total variance), the sum of the variances of 

all the landmark coordinates, which are the diagonal elements in the respective covariance matrix (i.e., 

the trace of the respective covariance matrix). An important aspect of analyses of shape asymmetry is 
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that the covariance matrices for fluctuating asymmetry and individual variation can be used in further 

analyses to access the information in the patterns of covariation.  

4.3. Morphometric Analysis of Object Symmetry 

Analyses of object symmetry need to take into account the fact that every landmark configuration 

consists of two halves that are arranged to each other as mirror images. As a consequence of this, there 

are two different types of landmarks: there are some single landmarks that are located in the median axis 

or plane, whereas the remaining landmarks occur as pairs on either side of the median axis or plane. We 

are familiar with this from human faces (Figure 3c), where the tip of the nose, the bridge of the nose and 

the tip of the chin are single landmarks on the midline, whereas the corners of the mouth, the inner and 

outer corners of the eyes, and similar landmarks appear as pairs on either side of the face. 

Instead of combining separate left and right sides in a Procrustes fit, as for matching symmetry, the 

analysis of object symmetry combines the entire configuration of landmarks with a copy that has been 

reflected to its mirror image (Figure 7) [12,13,34,213,214]. In a way, this combining of mirror images 

also brings together the left and right sides of the configuration. Further, because the method does not 

change how the left and right halves are attached to each other, the method also takes into account the 

relative arrangement of the two halves.  

 

Figure 7. Procrustes superimposition for a structure with object symmetry. The 

diagram shows the outline of a leaf with 18 landmarks: two median ones (1 and 10) and eight 

pairs of landmarks on either side of the median axis (dashed line). The landmark 

configurations for the original (blue) and reflected and relabeled configurations (red) are 

indicated, as well as the perfectly symmetric average shape of the two (purple). 
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When the original configuration of landmarks and its mirror image are combined for a Procrustes fit, 

there is one difficulty. The reflection brings the landmarks from the left side to the right side and vice 

versa. For instance, in Figure 7, landmark 6 of the original configuration (blue) will be on the opposite 

side near landmark 14 of the reflected copy (red). If these two points are considered to be corresponding 

landmarks, there will be problems with the Procrustes fit. Therefore, the paired landmarks in the reflected 

configuration must be relabeled so that, for each pair of landmarks, the landmark that is reflected from 

the left side and ends up on the right side has the same label as the landmark on the right side of the 

original configuration (and likewise for the opposite side). The landmarks on the midline are not 

relabeled. After relabeling, all the original and the reflected and relabeled configurations together are 

entered into a Procrustes fit (Figure 7, which shows an example with only a single configuration and its 

reflected and relabeled copy). 

The Procrustes fit produces an average shape (purple in Figure 7) and an optimal alignment of all the 

configurations, which minimizes the sum of squared deviations from the consensus configuration. Both 

results are useful for the analysis of symmetry and asymmetry. Because the Procrustes fit treats all the 

landmarks equally, the complete information about symmetry and asymmetry that every landmark 

contributes is used in the analysis. 

The consensus shape from the Procrustes fit of original and reflected and relabeled configurations is 

perfectly symmetric [12,13,214]. This is true both for the overall average across multiple configurations 

and their reflected and relabeled copies, as well as for the average of the original and reflected and 

relabeled copies of each configuration. As a consequence, all unpaired landmarks of these consensus 

shapes are lying exactly on a straight line or in a plane that is the anatomical midline or midplane  

(for 2D and 3D data, respectively; this is not visible in Figure 7 because there are only to unpaired 

landmarks). Furthermore, the lines that connect pairs of landmarks are exactly perpendicular on this 

midline and the two landmarks of each pair have equal distances to the midline. Therefore, the consensus 

shape from this Procrustes fit yields an estimate of the median axis or plane that takes into account the 

information from all the landmarks. This approach avoids the need for any ad-hoc assumptions that some 

landmarks, for instance those at anterior and posterior extremes of the midline, are more “reliable” than 

others and are therefore better suited for identifying the median line or plane [215–221].  

The reason why the consensus shape is symmetric is fairly easy to see by recalling the mathematical 

definition of symmetry (Section 2.2): an object is symmetric if it does not change when some 

transformation is applied to it, in this case reflection (and relabeling). If we apply this transformation to 

the data used to compute the consensus shape, the original configurations and their reflected and 

relabeled copies, we obtain the same data. Transforming an original configuration yields its reflected 

and relabeled copy, whereas transforming a reflected and relabeled copy simply reverses the 

transformation and yields the corresponding original configuration. If we perform a Procrustes fit with 

these transformed data, we obtain the same consensus as in the initial analysis because the Procrustes fit 

is done on the same data (the order of the configurations does not make a difference to the average shape 

that results). Therefore, the consensus shape does not change under reflection and relabeling, and is  

thus symmetric. 

After the Procrustes fit, the differences of the original (or of the reflected and relabeled copy) from 

the symmetric consensus indicate asymmetry of shape (Figure 7). Equivalently, asymmetry can also be 

read from the difference between the original and the reflected copies of each landmark configuration. 



Symmetry 2015, 7 865 

 

 

Both measures are equivalent up to a factor of 2.0, because the landmark positions for the consensus 

shape are midway between those for the original and the reflected and relabeled copies (Figure 7). 

Directional asymmetry is the average of the individual asymmetries and can be computed from the 

difference of the average of all the original copies minus the overall symmetric consensus in the entire 

sample (or, equivalent but twice the magnitude, the average shape of all the original minus the average 

of all the reflected and relabeled copies). Fluctuating asymmetry is the variation of individual 

asymmetries around the average of directional asymmetry, as for matching symmetry. 

An example of the possible results of an analysis of object symmetry is presented in Figure 8. The 

example uses data from pharyngeal jaws of Amphilophus citrinellus, a cichlid fish [13]. There is one 

landmark on the median line and four pairs of landmarks on either side. As expected, the overall 

consensus shape is perfectly symmetric (Figure 8a). The average asymmetry (Figure 8b) is subtle and 

needs to be exaggerated to be visibly different from the symmetric consensus shape. It is convenient to 

display the effects of variation among individuals and fluctuating asymmetry with principal component 

analyses of the respective covariance matrices, because the first few principal components provide the 

main patterns of shape variation at these two levels (Figure 8c,d). It is clearly visible that the shape 

changes differ between variation among individuals (Figure 8c) and fluctuating asymmetry (Figure 8d). 

The shape changes for individual variation are symmetric (Figure 8c): the relative shifts of paired 

landmarks on both sides are the same (e.g., if the left landmark moves anteriorly, so does the right one). 

By contrast, the shape changes for fluctuating asymmetry are asymmetric (Figure 8d), with relative shifts 

of paired landmarks in opposite directions (e.g., if the left landmark moves proximally, the right one 

moves distally). 

Symmetric variation originates from differences among individuals in the consensus shapes of the 

original and reflected copies of the landmark configurations. (Figure 8c). This origin imposes some 

constraints on the possible patterns of variation. The median landmarks are limited to movements within 

the axis or plane of symmetry, as any lateral deviation would be asymmetric. The paired landmarks on the 

left and right sides can move in any anatomical direction, but the relative displacements of the left and 

right landmarks are exactly the same—for instance, if the left landmark of a pair moves in a lateral and 

anterior direction, the right landmark also moves in the corresponding lateral and anterior direction as 

an exact mirror image.  

Asymmetric variation stems from the differences between the original and reflected and relabeled 

copies of each configuration. Accordingly, there are constraints on the asymmetric shape changes too 

(Figures 7 and 8d). For the median landmarks, such differences can only exist in the direction 

perpendicular to the median axis or plane (Figure 7), and asymmetric variation of these landmarks is 

thus confined to that direction. For the paired landmarks, differences can be in any direction, but the two 

landmarks of each pair have differences that are exactly opposite to each other and have the same 

magnitude (see the opposite arrangements of red, purple and blue dots for the paired landmarks in  

Figure 7). Therefore, from the change in one landmark, the change in the other landmark of the same 

pair is predictable exactly.  
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Figure 8. Analysis of object symmetry. The data are from a sample of 40 pharyngeal jaws 

of cichlid fish [13]. (a) The symmetric consensus shape for the entire sample; (b) Directional 

asymmetry. The diagram shows the average asymmetry, exaggerated by a factor of 10; 

(c) Principal components for the individual variation. The diagrams show the shape changes 

for the first three principal components of the symmetric component of variation, each with 

a magnitude of +/−0.1 units of Procrustes distance; (d) Principal components for fluctuating 

asymmetry. The diagrams show the shape changes for the first three principal components 

of the asymmetric component of variation, each with a magnitude of +/−0.1 units of 

Procrustes distance. Note that the asymmetry in (b) and the shape changes in (c) and (d) are 

greatly exaggerated by comparison to the actual scale of variation in the data. Percentages 

indicate the share of the total variance for which each principal component accounts in the 

respective component of shape variation. 

The symmetric and asymmetric components of variation are not only distinct because they are associated 

with different shape changes, but these two components of variation also occupy two distinct, mutually 

orthogonal subspaces of the shape tangent space of the whole configuration of landmarks [12,13,214]. 

Together, the two subspaces add up to the complete shape tangent space. Because of the various 

constraints that apply to the symmetric and asymmetric components of variation, each of them has fewer 

dimensions than the entire shape tangent space, but together, the dimensions in the two subspaces add 

up to the total dimensionality of the whole shape tangent space. This structure of shape variation for 

landmark configurations with object symmetry has important implications for morphometric studies. 

That the symmetric and asymmetric shape changes occupy two different subspaces can be understood 

intuitively by looking again at Kendall’s shape space for triangles (Figure 6). In the particular orientation 

of the shape space in Figure 6, one of the “meridians” of the spherical shape space is visible as a vertical 

line through the center of the diagram. The shapes that are located on this line are all isosceles triangles, 

with equal lengths of the left and right sides, which also means that these triangles are all symmetric 

about the vertical axis. The shape of isosceles triangles can only vary in one aspect: the ratio of height 
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to width of the triangle. The vertical line in the diagram shows the entire spectrum, from top to bottom, 

from extremely flat and wide to extremely tall and narrow isosceles triangles (in the two extremes, all 

three points of the triangle lie on a single line). Therefore, the vertical direction in Figure 6 is the 

symmetric component of the shape space of the triangles. To find triangles that are asymmetric, it is 

sufficient to go from this vertical line to the left or right side, corresponding to “pulling” the upper vertex 

of the triangle to the left or to the right. Therefore, the direction from left to right is the asymmetry 

component. Accordingly, the symmetric component and the asymmetry component each have a single 

dimension. Together they sum up to the two dimensions of Kendall’s shape space for triangles.  

To derive the dimensionalities of the subspaces containing the symmetric and asymmetry components 

for shapes with more than three landmarks, it is possible to enumerate the degrees of freedom by 

considering the constraints of landmark displacements for the symmetric and asymmetric components 

of variation [12,13]. Assume there are k pairs of landmarks on both sides and l single landmarks in the 

median axis or plane, in either 2D or 3D data (2k + l ≥ 3 must hold, so that there is at least a triangle of 

landmarks; the restriction [13] that k ≥ 1 is unnecessary). The dimensionality of the complete shape space 

is then 4k + 2l − 4 for 2D data and 6k + 3l − 7 in 3D data (the total number of all landmark coordinates, 

minus the number of degrees of freedom lost to standardize size, position and orientation in the 

Procrustes fit). The paired landmarks, for both symmetric variation and asymmetry, can shift in any 

direction, but for each pair, the displacement of the landmark on one side completely determines the 

landmark displacement on the other side. Therefore, for each subspace, the paired landmarks contribute 

2k dimensions for 2D data or 3k dimensions for 3D data. The median landmarks can move in the median 

axis or plane for the symmetric component of variation, which corresponds to l dimensions for 2D data 

and 2l dimensions for 3D data. For the asymmetry component, the median landmarks can only move in 

the single direction perpendicular to the median axis or plane, and there are therefore l degrees of 

freedom. The constraints imposed by the Procrustes fit also need to be taken into consideration. For the 

symmetric component of variation, there are three such constraints: (i) one degree of freedom is lost for 

scaling to standard centroid size, both for 2D and for 3D data; (ii) the landmark displacements in the 

direction of the median axis or plane must sum up to zero, removing one degree of freedom for 2D data 

and two for 3D data, and, for 3D data only; (iii) there is a further constraint on rotation in the plane of 

symmetry (no “pitch”), removing one degree of freedom. There are two further constraints concerning 

asymmetry: (i) the lateral displacements in all landmarks must sum to zero, removing one degree of 

freedom for both 2D and 3D data; and (ii) an additional constraint concerns rotations (no “roll” or 

“yaw”), eliminating one degree of freedom for 2D data and two for 3D data. Altogether, the constraints 

for the Procrustes fit eliminate two degrees of freedom each from the symmetric and the asymmetric 

component of variation in 2D data. In 3D data, these constraints remove four degrees of freedom for the 

symmetric component and three degrees of freedom for asymmetry. For 2D data, therefore, the two 

subspaces of the shape space each contain 2k + l − 2 dimensions, whereas for 3D data, the symmetric 

component has 3k + 2l − 4 dimensions and the asymmetry component has 3k + l − 3 dimensions [13]. 

For most practical applications, it is sufficient to remember that each subspace has about half the 

dimensionality of the entire shape space (this holds exactly for 2D data, and is approximately so for 3D 

data including a reasonable number of paired landmarks). 

The structure of the symmetric and asymmetric components of shape variation of a landmark 

configuration with object symmetry can be explored by multivariate analyses of the variation in the 
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averages and differences of original and reflected and relabeled copies of the landmark configurations 

(Figure 8c,d). An alternative method is to use the combined dataset of original as well as reflected and 

relabeled configurations in a principal component analysis [222]. The resulting principal components 

are aligned either with the symmetric component or with the asymmetry component, but not at an oblique 

angle to them, and the shape features associated with the principal components are therefore either 

symmetric or asymmetric shape changes, but not a mix of the two. This method was used in a study of 

human faces [223], but because the more conventional analysis (as in Figure 8c,d) is fairly 

straightforward for bilateral symmetry, the technique is perhaps better suited for more complex types of 

asymmetry [14,23,27].  

The fact that the symmetric and asymmetric components of shape variation occupy orthogonal 

subspaces of the overall shape space has some consequences for subsequent analyses of variation. For 

instance, comparisons of the patterns of covariation between the two subspaces need to make some 

adjustments in the methods used [13] (additional information concerning specific methods is given in 

Section 5).  

The symmetric and asymmetric components of variation have fundamentally different biological 

interpretations and relevance, and should therefore be distinguished in studies of shapes with object 

symmetry even if symmetry and asymmetry are not of primary interest [13]. The separation of shape 

variation into the two components is biologically and statistically sound because it reduces or removes 

the effect of possibly confounding factors. Further, it is mathematically exact and rigorous. Due to the 

orthogonal nature of the two subspaces of shape tangent space, each of the two subspaces provides the 

complete variation of the respective component with the correct dimensionality, which facilitates further 

analyses. Because the symmetric and asymmetry component each have only about half the 

dimensionality of the shape space of the complete configuration, using only the one component relevant 

for the research question at hand is also an effective method of dimension reduction. 

The symmetric component of variation is what many biologists informally think of as “shape” and is 

therefore the optimal choice for further analyses addressing a wide range of questions in ecology, 

evolution or ontogeny [224–226]. Alternative approaches, such as using various ad-hoc procedures for 

identifying a median axis from just some landmarks [215–221] or ignoring the symmetry of the structure 

altogether [227–230], seem clearly inferior to the Procrustes approach for object symmetry. Using only 

half of a symmetric structure, which was a reasonable recommendation before methods to deal with 

object symmetry were available [34], is still sometimes used [231–234], but also has a number or 

disadvantages because it offers no principled way of removing potentially confounding asymmetry in 

the structure [13,235]. 

4.4. Quantifying Shape Variation and Asymmetry: Procrustes ANOVA 

Traditional analyses of fluctuating asymmetry have long used a two-factor, mixed-effect ANOVA 

with individuals and sides as the two factors [2,152,153]. The main effect of individuals results from 

variation in their left–right averages of trait values. The main effect of side reflects the average difference 

between left and right sides, and therefore represents directional asymmetry. The individual-by-side 

interaction is due to differences among individuals in their left–right asymmetries, and therefore stands 

for fluctuating asymmetry or antisymmetry. Because measurement error is often a serious concern for 
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studies of fluctuating asymmetry, the ANOVA model can be expanded by including replicate 

measurements [2,153]. 

This ANOVA model has been incorporated into studies of fluctuating asymmetry using the methods 

of geometric morphometrics [11,13]. This is straightforward because the algebra that underlies the 

computations of the Procrustes superimposition is based on sums of squared deviations, and is therefore 

directly compatible with the sums of squares used in conventional ANOVA. The key point is that, in the 

calculation of Procrustes distances, squared coordinate differences are added up across all coordinates 

of all the landmarks. Goodall [206] established the use of ANOVA designs in the context of Procrustes 

methods, which provides the statistical foundation for Procrustes ANOVA in studies of shape 

asymmetry. Table 1 provides an example of a Procrustes ANOVA for a small sample of Drosophila 

wings, including replication for estimating the error from imaging and digitizing. 

Table 1. Procrustes ANOVA for a sample of fly wings. The table contains the results of 

an analysis for a sample of left and right wings from 24 flies, each wing with 15 landmarks. 

Two images were taken of each wing and each image was digitized twice, so the imaging 

and digitizing errors could be estimated separately. The table lists the Procrustes sums of 

squares, Procrustes mean squares and degrees of freedom for all effects, as well as Goodall’s 

F values and parametric P-values where they are available. Pillai’s trace, one of the 

MANOVA statistics, and the associated P-value shown only for the imaging effect and the 

individual-by-side interaction, because the small sample size does not allow its computation 

for the main effects of individual or side. 

Effect 
Sum of 
Squares 

Mean 
Squares 

df F P 
Pillai’s 
trace 

P 

Individual 0.013438 2.25 × 10−5 598 2.06 <0.0001 – – 
Side 0.000487 1.87 × 10−5 26 1.72 0.0154 – – 

Ind. × Side 0.006519 1.09 × 10−5 598 25.16 <0.0001 16.65 <0.0001
Imaging 0.000541 4.33 × 10−7 1248 1.16 0.0010 9.22 0.0259

Digitizing 0.000027 3.73 × 10−7 2496 – – – – 

Procrustes ANOVA uses the coordinates of landmarks after a joint Procrustes superimposition of all 

the data in the sample (all individuals, both sides or original and reflected/relabeled configurations, all 

replicate measurements). The computation of sums of squares proceeds in the same way as in 

conventional ANOVA [2,153,236], with the difference that squares of coordinate differences are added 

up for all coordinates of all landmarks [11,13,206]. As a result of this summation over coordinates, there 

are more degrees of freedom associated with the sums of squares than in the corresponding sums of 

squares for a conventional ANOVA: the degrees of freedom in Procrustes ANOVA can be obtained for 

each ANOVA effect by multiplying the degrees of freedom for the respective effect in conventional 

ANOVA by the shape dimension [11,13]. The ANOVA degrees of freedom are a result of the design 

and reflect the sample size, number of replicate measurements, etc. The shape dimension, for matching 

symmetry, is the dimensionality of the shape space (with k landmarks, 2k − 4 for 2D data and 3k − 7 for 

3D data) [11,13]. For data with object symmetry, the shape dimension depends on the ANOVA effect, 

because some effects concern the symmetric and others the asymmetry component of shape variation. 

For the main effect of individuals, the shape dimension is the dimensionality of the subspace for 
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symmetry (with k pairs and l single landmarks, 2k + l − 2 for 2D data and 3k + 2l − 4 for 3D data), 

whereas the shape dimension for the main effect of side and for the individual-by-side interaction is the 

dimensionality of the asymmetry subspace (2k + l − 2 for 2D data and 3k + l − 3 for 3D data) [13]. 

Measurement error affects every aspect of shape, and its shape dimension is therefore the dimensionality 

of the entire shape space, even for object symmetry [13]. 

The approach of calculating Procrustes sums of squares and using them to compute Goodall’s F is an 

option for conducting statistical tests of the effects in a Procrustes ANOVA that directly extends 

Goodall’s [206] use of ANOVA in the context of asymmetry analyses [11,13]. Mean squares can be 

obtained by dividing the Procrustes sums of squares by the degrees of freedom for the respective effects. 

Dividing the mean square of each effect by the mean square for the appropriate error effect (the same as 

in the univariate ANOVA for asymmetry [2,153]) yields the F-value. The tests can use either a 

parametric [206] or a nonparametric permutation approach [237,238]. Using the parametric F test makes 

the assumption that the distribution of data points in shape tangent space is approximately multivariate 

normal and that variation is isotropic (equal amounts of variation in all directions). Multivariate 

normality is probably a reasonable proposition for intra-population data as they are often used in studies 

of asymmetry, but the assumption of isotropic variation is biologically unrealistic [13,239]. The assumption 

of multivariate normality can be avoided by using the permutation approach, but even that method 

implies the assumption of isotropic variation as long as it uses Goodall’s F or another test statistic derived 

from Procrustes sums of squares. Also, permutation tests can involve tedious programming, particularly 

with unbalanced designs, which may be why they have been used only rarely [11,13,16,44,132]. A direct 

comparison of parametric and permutation results yielded similar P-values for both approaches [13]. 

To avoid the assumption of isotropic variation, it is possible to conduct tests with the classical test 

statistics for MANOVA, such as Pillai’s trace, the Lawley-Hotelling trace, or Wilks lambda [240–242]. 

These statistics are computed from matrices of sums of squares and cross products, rather than Procrustes 

sums of squares, and therefore preserve information about the directionality of variation [239]. This 

comes at a cost, however, because these methods require large sample sizes to perform well, and there 

are some serious limitations in the presence of object symmetry [13]. Because the symmetric and 

asymmetric components reside in orthogonal subspaces of the shape tangent space, both the effect of 

interest and its error effect must be from the same component of variation. For instance, using the 

individual-by-side interaction as the error effect for the main effect of individuals, as it is usual for 

univariate ANOVA of asymmetry [2,153], is therefore not possible in the MANOVA framework [13]. 

The Procrustes approach can overcome this problem by assuming that isotropy holds across the entire 

shape tangent space. In practice, tests using the Procrustes and MANOVA statistics often yield similar 

P-values, so this distinction is usually not a serious concern (but very few direct comparisons have been 

published [13]). 

For scalar traits containing size information, such as distance measurements or centroid size of 

landmark configurations (with matching symmetry), fluctuating asymmetry is usually very subtle, on 

the order of 1% of the trait average or even less, and is normally also much smaller than the variation 

among individuals [3,153,155,243]. By contrast, many analyses of shape have shown that the difference 

in the amounts of fluctuating asymmetry and individual variation is less pronounced (as can be assessed 

by the ratio of the Procrustes mean squares of the main effect of individuals and of the individual-by-side 
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interaction). No systematic comparison has been done, but this is a pattern that seems to be rather 

widespread among published Procrustes ANOVAs. 

An important function of Procrustes ANOVAs is to provide a simple means to gauge the possible 

effect of measurement error on estimates of fluctuating asymmetry (see also Section 4.9.2). If each of 

the landmark coordinates has been digitized multiple times, the residual effect in the Procrustes ANOVA 

indicates the variation among these replicate measurements. The question is whether fluctuating 

asymmetry is sufficiently large relative to the measurement error so that the error is negligible. This 

requires more than just an effect of fluctuating asymmetry that is statistically significant, because that 

only indicates that there is some effect of fluctuating asymmetry in addition to the measurement error. 

For the error to be negligible, the magnitude of fluctuating asymmetry needs to be much bigger than the 

magnitude of measurement error. A useful measure for this is the ratio of the respective mean squares in 

the Procrustes ANOVA, which is also the F ratio for the effect of fluctuating asymmetry [11,13]. Under 

favorable conditions, this ratio can be high (e.g., 25 in the example of Table 1, or also in published 

examples [44,56,93]), indicating that the measurement error makes up no more than a few percent of the 

estimate of fluctuating asymmetry and is therefore negligible. More often, however, this ratio is lower, 

with fluctuating asymmetry just a few times bigger than the error term, suggesting that replication and 

other measures to reduce the effect of measurement error are necessary. 

4.5. Individual Measures of Fluctuating Asymmetry of Shape 

For many applications, a population estimate of the quantity and pattern of fluctuating asymmetry is 

not sufficient, but investigators need a measure of the asymmetry for individuals. This applies 

particularly to observational studies that examine the association of fluctuating asymmetry, as an 

estimate of developmental instability, with various environmental, genetic, or behavioral variables. In 

experimental studies, the “treatment” and “control” groups can be compared to each other. In many 

observational studies, however, there are no clear groups, and such studies therefore tend to focus on the 

variation of asymmetry and external factors among individuals within a population. For these studies, 

an estimate of individual asymmetry is required. 

Because fluctuating asymmetry is the result of random irregularities during development, the specific 

direction of the left–right difference is not informative, but the magnitude of the shape asymmetry can 

be used as an estimate of developmental instability. A straightforward choice for a measure of the amount 

of overall asymmetry is therefore the Procrustes distance (or squared Procrustes distance) between left 

and right sides [11,41,53,116,128,129,132,161,162,164] or, for object symmetry, between the original and 

the reflected and relabeled landmark configurations [110,244–249]. Some researchers made minor 

adjustments to obtain modified indices of asymmetry, for instance, by dividing by the number of 

landmarks [245]. 

In the presence of directional asymmetry, which is very widespread (Section 3.1), the Procrustes 

distance between left and right sides is the combined result of fluctuating and directional asymmetry. To 

separate the two effects, it is possible to subtract the mean asymmetry to remove the effect of directional 

asymmetry before computing the Procrustes distance between the left and right shapes, so that the 

resulting distance indicates exclusively the magnitude of fluctuating asymmetry [11,41,239]. This 

measure of asymmetry, again, is available for both matching symmetry, where it is obtained from 
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differences between the left and right sides [40,61,250,251], and for object symmetry, where it quantifies 

differences between original and reflected and relabeled configurations [86,94,102,105,134,148,252]. 

Quantifying fluctuating asymmetry as Procrustes distance provides an absolute magnitude of the 

shape difference between the left and right sides (possibly adjusting for directional asymmetry, as 

appropriate). This approach does not take into account that fluctuating asymmetry usually is not 

distributed equally in all directions, but some shape features are more variable than others (Figure 9a). 

Therefore, the question arises whether an intermediate-sized left–right difference is equivalent in a 

direction in which there is much asymmetry, where this difference may appear relatively small,  

and in a direction where there is little asymmetry, where the same left–right difference might be 

unusually large.  

 

Figure 9. Measures of individual asymmetry based on Procrustes distance or on 

Mahalanobis distance. (a) Distribution of left–right differences in shape tangent space. 

Magnitudes of asymmetries are in units of Procrustes distance and therefore reflect absolute 

shape differences. Some directions (lower-left to upper-right) contain more variation and 

others less (upper-left to lower-right). The numbered arrows indicate the asymmetries of 

three individuals; (b) Distribution of the same asymmetries as in (a) after transformation by 

the inverse of the covariance matrix. The data space has been transformed so that there is an 

equal amount of variation in every direction. Distances in this transformed space are in units 

of Mahalanobis distance; (c) Because variation is isotropic after the transformation, distances 

can be directly compared regardless of directions (gray circles). From [239], Society of 

Systematic Biologists, with permission. 

To address this problem, it is possible to use the Mahalanobis distance between left and right sides, 

rather than the Procrustes distance, as an individual measure of fluctuating asymmetry [239]. The 

transformation uses the distribution of left–right differences around the average of directional asymmetry 

(Figure 9a; this is the sample distribution of fluctuating asymmetry), and scales each direction by the 

inverse of its variation of asymmetries, so that the shape tangent space is transformed into a new space 

in which there is an equal amount of fluctuating asymmetry in every direction (Figure 9b). As a result, 

distances are fully comparable regardless of the directions of the corresponding left–right differences in 

the shape tangent space (Figure 9c). This comes at a cost, however, because the transformation requires 

a sufficient sample size for estimating the covariance matrix reliably, which can be a problem in practice. 

Also, the asymmetry scores are not in units of Procrustes distance, and therefore are not easily related to 

other measures of shape variation in the data. The asymmetry measure using Mahalanobis distance is 
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used in an increasing number of studies, comparing levels of fluctuating asymmetry between groups or 

correlating it with factors that might influence developmental instability, both for structures with 

matching symmetry [77,124] and with object symmetry [90,98,108,137,253].  

4.6. Morphometric Analysis of Complex Symmetry 

Bilateral symmetry is just one of many types of symmetry in living organisms (Figure 1). The natural 

question, then, is whether the methods outlined above for bilateral symmetry can be generalized for 

complex symmetries. A framework of morphometric methods for the analysis of any type of symmetry 

has been proposed [14], which uses the theory of symmetry groups (Section 2.2) as its conceptual basis. 

It might therefore be useful to review briefly the morphometric methods for bilateral symmetry, 

discussed in the preceding sections, from the perspective of symmetry groups.  

The symmetry group for bilateral symmetry contains just two transformations: a reflection and the 

identity, the transformation that produces no change. Using a description that focuses on symmetry 

transformations, we can therefore explain the morphometric analysis for matching symmetry  

(Section 4.2) as follows: for each pair of landmark configurations, the configuration of one side is 

transformed using the reflection, the configuration of the other side is transformed with the identity 

(which has no effect), and all pairs of transformed configurations are entered together in a generalized 

Procrustes superimposition. For object symmetry (Section 4.3), the analysis is based on two copies of 

the each landmark configuration in the sample, of which one copy is transformed using the reflection 

and the other copy using the identity, and both copies of all configurations are then superimposed in a 

joint Procrustes fit. For both matching and object symmetry, asymmetry can be computed from the 

differences between the Procrustes coordinates of the configurations transformed with the reflection and 

identity (i.e., the two sides for matching symmetry and the reflected and original copies for object 

symmetry). Also, a symmetric consensus or left–right average can be computed by averaging both 

configurations for each individual in the sample. These descriptions in terms of symmetry 

transformations are helpful both to put the preceding accounts of the procedures for bilateral symmetry 

into the perspective of the more general mathematical approach and as a starting point for discussing 

morphometric analyses of complex symmetry. 

4.6.1. Analyses of Matching Symmetry for Complex Symmetries 

The perspective of matching symmetry focuses on the repeated parts, for instance the wings of a fly 

(Figure 3) or the human hands. For complex symmetry, there are usually more than two copies that are 

repeated in various spatial arrangements (Figure 1). Examples are the petals of flowers (Figure 1b), 

vertebrae in the spine of a fish (Figure 1c), chambers in a nautilus shell (Figure 1d), or even the quadrants 

of an algal cell (Figure 1a). 

The first step in an analysis of matching symmetry is therefore to identify the repeated units and to 

collect coordinates of a set of corresponding landmarks in each repeated unit (Figure 10). Configurations 

of each of these parts are considered separately. This may require that landmarks shared on the boundary 

between two units are duplicated, so that each of the configurations has a complete set of landmarks. 

Depending on the arrangement of parts, the landmark configurations of some of the parts may need to 
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be reflected before they can be superimposed. Finally, the configurations of all parts and all individuals 

are entered together into a joint Procrustes superimposition (Figure 10). 

 

Figure 10. Analysis of matching symmetry in a structure with complex symmetry. The 

structure of the example has disymmetry (biradial symmetry), with two perpendicular axes 

of symmetry. The structure can be divided into four quadrants, A, B, C, and D. In order for 

the quadrants to be superimposed properly, two need to be reflected (quadrants B and C; 

quadrant D does not need to be reflected, but undergoes a rotation by 180° as part of the 

Procrustes fit, which is equivalent to applying both reflections). All four quadrants are then 

entered together into a joint Procrustes fit (right). 

The Procrustes superimposition extracts the variation in the shapes of the repeated parts in all the 

configurations. As for bilateral symmetry, averaging over the parts of each individual produces an 

estimate of a consensus that can be used to characterize individual variation, whereas differences among 

the repeated parts of each individual provide estimates of asymmetry. The difference is that, with 

complex symmetry, there may be more than one aspect of asymmetry. For instance, for a structure with 

disymmetry (Figure 10), it might be of interest to compare the left–right asymmetry to the dorsal–ventral 

(or adaxial–abaxial) asymmetry. For doing this, an estimate of left–right asymmetry can be obtained as 

the difference between the average shape of the two left parts (A, C) and the average shape of two right 

parts (B, D), whereas the dorsal–ventral asymmetry can be computed as the difference between the 

average shape of the two dorsal parts (A, B) and the average shape of the two ventral parts (C, D). Which 

types of asymmetries are of interest, and how they are calculated from contrasts of repeated parts 

included in the joint Procrustes superimposition, depends on the number and arrangement of parts and 

therefore on the type of symmetry. 

For morphological structures with matching symmetry, all the components of asymmetry and of 

variation among individuals are occupying the same shape space: the shape space of the repeated parts. 

Therefore, all components will have the same dimensionality and further analyses of the patterns of 

variation can be compared with the usual morphometric tools [11,254].  
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Note that the repeated parts themselves may be symmetric, with object symmetry of some kind. For 

instance, the vertebrae that make up the spine show translation symmetry as a whole (Figure 1c), but 

each of them is bilaterally symmetric [14]. Likewise, the petals of many flowers, which may be chosen 

as the repeated parts in studies of floral symmetry, often are also bilaterally symmetric. In cases like this, 

the investigator has the choice of redefining the unit of the analysis, and focus on half-vertebrae or  

half-petals instead whole vertebrae or petals. This choice, of course, will increase the number of parts 

(in the examples, this would be a doubling of the number of parts included in the Procrustes fit). 

Alternatively, the object symmetry of the parts can be addressed directly, which requires that two or 

more copies of each landmarks configuration are included in the overall Procrustes fit, each appropriately 

transformed and relabeled (e.g., if each part is bilaterally symmetric, each will have one unchanged and 

one reflected and relabeled copy). The choice between these two alternatives depends on the specific 

system at hand and on the biological question that the analysis is intended to answer. 

To my knowledge, there are no fully worked examples of this approach yet. There is considerable 

potential for studies of structures repeated as a sequence along some axis, like vertebrae in the spinal 

column of fish or snakes [255,256], plant leaves along a shoot axis [257–260], leaflets within compound 

leaves [173,191,260], or flowers within an inflorescence [261]. In plants, particularly, the modular body 

plan provides many opportunities for exploring variation among repeated parts within individuals [262].  

4.6.2. Analyses of Object Symmetry for Complex Symmetries 

Analyses of object symmetry consider variation in a symmetric structure as a whole and thus take 

into account both the variation of repeated parts and their relative arrangement. Examples are algal cells 

with disymmetry (Figure 1a) or flowers with rotational symmetry (Figure 1b). Note that object symmetry 

is not applicable to all types of symmetry, but only to those with finite symmetry groups [14]. This 

excludes, for example, translational symmetry (Figure 1c) and spiral symmetry (Figure 1c), where it is 

impossible to superimpose transformed copies of the entire structure because of problems at the ends of 

the axis of translation or the spiral. For the vast majority of studies of complex symmetry in biological 

structures, it is sufficient to limit the discussion to symmetries that include a single rotation with or 

without a reflection [14]. There are types of biological structures with different symmetries (e.g., 

radiolarians with symmetries of the Platonic solids), but for practical reasons these are unlikely to be 

used in morphometric studies. 

Morphometric analyses of object symmetry for complex types of symmetry [14] are based on the 

theory of symmetry groups (Section 2.2). The principal idea of the analysis is to make copies of the 

landmark configurations and to use each symmetry transformation in the symmetry group to transform 

one copy (Figure 11). These copies are then entered into a joint Procrustes fit and components of 

symmetric shape variation and asymmetry are extracted from the resulting Procrustes coordinates. This 

approach is a direct extension of the method for object symmetry with bilateral symmetry [12,13,214]. 

The first study that used the approach, for a dataset with disymmetry, did not refer to symmetry groups 

but was a direct extension of the idea of a combined Procrustes fit with multiple copies per  

specimen [22]. 
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Figure 11. Analysis of object symmetry in a structure with complex symmetry. The 

example uses the same structure as Figure 10, but the entire configuration is copied for the 

analysis of object symmetry. The four transformations (center) are those in the symmetry 

group for disymmetry. The four transformed and relabeled copies of the landmark 

configuration are entered into a joint Procrustes superimposition (right). 

The first step in the analysis is to record landmarks so that each repeated part contains a set of 

corresponding landmarks. Shared landmarks on the boundaries between repeated parts are not a 

problem—it does not really matter to which part each landmark belongs. What is important, however, is 

that each landmark has exactly one corresponding landmark when any of the transformations in the 

symmetry group is applied (even if the landmark is mapped onto itself, e.g., for the central point of a 

structure under reflection or rotation). 

The second step, as for bilateral symmetry (Section 4.3), is to make copies of the original landmark 

configuration of each individual in the sample. The number of copies is the same as the number of 

transformations in the symmetry group, and therefore depends on the type of symmetry. For instance, it 

is four for disymmetry: a left–right reflection, a dorsal–ventral reflection, the combination of both 

reflections (which is the same as a rotation by 180°), and the identity (Figure 11). For the equilateral 

triangle, there are six symmetry transformations (Figure 2) and six copies are therefore required. Each 

copy then needs to be transformed with one of the transformations in the symmetry group and the 

landmarks need to be relabeled accordingly. Relabeling of landmarks is critically important and is based 

on the correspondences of landmarks among repeated units in the structure as a whole [14]. 

The Procrustes superimposition then uses the entire set of transformed and relabeled copies of 

landmark configurations. The resulting average shape, both for the sample as a whole and for the set of 

copies of each specimen, is perfectly symmetric. For instance, for a triangle to which the analysis for the 

symmetry group of the equilateral triangle (Figure 2) was applied, the consensus shape is an equilateral 
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triangle (Figure 12). The variation among the symmetric averages of the copies of landmark 

configurations for all individuals defines a component of shape variation that is completely symmetric 

(symmetric under every transformation in the symmetry group; Figure 13a). 

 

Figure 12. Procrustes superimposition for a triangle, using the approach for object 

symmetry. A single triangle has been transformed and relabeled according to the six 

transformations in the symmetry group for the equilateral triangle (Figure 2). The resulting 

triangles are shown here in the Procrustes superimposition, together with the completely 

symmetric consensus (black triangle). Modified from [14]. 

Depending on the type of symmetry, and therefore on the structure of the symmetry group, one or 

more components of asymmetry can be extracted from the Procrustes-superimposed coordinates by 

computing differences between copies of the same configurations that were transformed differently. For 

instance, to compute a component of dorsal–ventral asymmetry in a configuration with disymmetry 

(Figure 11), it is the difference between configurations that have or have not been reflected in the  

dorsal–ventral direction that are of interest. Averaging across the copies that have or have not been 

reflected in the left–right direction makes the resulting shape changes left–right symmetric (Figure 13b). 

Other components of asymmetry can be obtained in similar ways (Figure 13c,d). Depending on the type of 

symmetry, therefore, there can be multiple types of asymmetry with different characteristics. 
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Figure 13. Components of symmetric and asymmetric variation in Erysimum corolla 

shape. The diagrams show the shape changes associated with principal components of an 

analysis of all four copies of each landmark configuration, using the method for object 

symmetry with disymmetry (cf. Figure 11). For each component of symmetry or asymmetry, 

the first five principal components are shown. (a) Symmetric component. This is the 

variation among the symmetric consensus configurations of individual flowers;  

(b) Adaxial–abaxial asymmetry (dorsal–ventral); (c) Left–right asymmetry; (d) Transversal 

asymmetry. The shape changes in this component are asymmetric under reflection about 

both the adaxial–abaxial and the left–right axes, but symmetric under rotation by 180°. 

Modified from [27]. 

The fact that the total shape variation is organized into several distinct components according to 

symmetry or asymmetry has consequences for the structure of variation in shape tangent space. The 

different components of variation occupy orthogonal subspaces in the shape tangent space [14]. It is 

possible to work out the dimensionality of the subspaces by enumerating degrees of freedom [14], but 

this is fairly tedious. As an easier alternative, for particular datasets, there is an exploratory approach 

using principal component analysis, which is an extension from the corresponding method for bilateral 

symmetry [222]. This method uses a principal component analysis of the combined data of all 
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transformed copies of landmark configurations after the Procrustes fit [14]. Each of the resulting 

principal components is aligned with just one of the subspaces and the corresponding shape change can 

be used to identify its type of symmetry or asymmetry [14,23,24,27]. The associated eigenvalue indicates 

the amount of variation for which it accounts. An example is shown in Figure 13, which shows the results 

of an analysis of corolla shape in Erysimum mediohispanicum [27]. Like other members of the family 

Brassicaceae, Erysimum has disymmetric flowers, which are symmetric under reflection about the 

adaxial–abaxial (upper versus lower petals) as well as left–right axes. 

The different components of symmetry and asymmetry of shape are not only geometrically distinct 

from each other, but also can have different biological significance. For the Erysimum example  

(Figure 13), the symmetric component is mostly featuring variation in the shape and relative arrangement 

of petals (Figure 13a). The adaxial–abaxial component of variation shows differentiation of the upper 

and lower petals (Figure 13b). Remarkably similar patterns of shape changes emerged in studies of 

selection by pollinators on corolla shape in Erysimum [26,263–266], even though the analyses did not 

explicitly take into account floral symmetry, suggesting that the differentiation of upper and lower petals 

is a floral feature that is important for pollinators. Also, differentiation of adaxial and abaxial parts of 

flowers is a prominent aspect of floral evolution and is under specific developmental genetic  

control [18–21,28,29,267]. The third component of variation, left–right asymmetry (Figure 13c), has the 

usual interpretation, but the analysis separates it clearly from the other components of asymmetry. 

Finally, there is an additional component of asymmetry, transversal asymmetry [24], which is 

asymmetric with respect to reflections about both the vertical and horizontal axes, but symmetric under 

rotation by 180° (Figure 13d). The biological significance of this type of asymmetry is unclear and will 

need to be examined as additional studies in structures with disymmetry become available. 

The biological significance of the different components, even for the same type of symmetry, can 

differ from one study system to another. Another study system with disymmetry is the unicellular alga 

Micrasterias rotata [23,24]. Because these cells multiply by splitting and re-growing the missing half of 

the cell, the asymmetry between half-cells is inherently associated with variation due to cell growth and 

differentiation. By contrast, the left–right asymmetry has no such special significance, but is presumably 

due to random fluctuations in the processes of growth and formation of the cell wall. Finally, again, the 

biological significance of the transversal component is unclear.  

Neustupa [24] computed the four components of symmetric and asymmetric shape variation and used 

them in analyses comparing different Micrasterias taxa and found that the symmetric component 

separated the taxa much more than any of the three components of asymmetry. Whether this finding can 

be generalized to other taxa remains to be seen—similar analyses in other study systems are clearly 

needed. If this result holds generally, then using just the symmetric component of variation for taxonomic 

studies of structures with complex symmetry (or maybe studies in other contexts as well) would be an 

excellent way of drastically reducing the dimensionality of the data and eliminating statistical noise from 

asymmetry that is irrelevant to that kind of study. 
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4.7. Alternative Methods for Complex Symmetry 

Two alternative methods for the analysis of landmark configurations with complex symmetries have 

been proposed. One is a general framework for identifying symmetries of objects that has been 

developed primarily for chemistry [268], but has also been further developed for applications such as 

image analysis [269], whereas the other is a variant of this method, specifically intended for the study of 

deviations from rotational symmetry in flowers [270]. Here I briefly introduce the two approaches here 

and outline their relationship to the Procrustes approach.  

4.7.1. Continuous Symmetry Measure 

In a series of papers, Zabrodsky et al. [268,269,271,272] proposed a general framework for 

quantifying the degree of asymmetry in structures defined by a set of points, such as positions of atoms 

in a molecule. This framework is based on the mathematical theory of symmetry groups (Section 2.2) 

just as the Procrustes approach outlined above. Because the principal focus was on applications in 

chemistry, however, the main goal of the approach is to quantify the symmetry of a single object rather 

than the variation within a sample.  

The approach is based on the idea of “folding” and “unfolding” a configuration of points according 

to the transformations of the symmetry group (Figure 14). For the folding step, the transformations in 

the symmetry group are applied to bring corresponding points from the repeated parts of the structure 

together. For instance, for disymmetry, the points from all four quadrants are brought together in a single 

quadrant (Figure 14b). The positions of the points can then be averaged to obtain a consensus position 

(red dot in Figure 14b). In the unfolding step, the consensus point is copied back into all repeated parts 

of the configuration, using the appropriate symmetry transformation for each copy, so that a completely 

symmetric configuration results (Figure 14c). If there are multiple landmarks per repeated part of the 

structure, the folding and unfolding can be performed for each of them separately. 

The measure of asymmetry is the average of the squared distances of the points in the original 

configuration from the corresponding points in the symmetric consensus configuration (Figure 14b,d). 

The details of symmetry transformations such as the axes or planes of reflection and centers or axes of 

rotation are chosen to minimize the sum of squared distances between the original and symmetric 

configurations (accordingly, the centroid of the configuration serves as the center of rotations and axes 

of reflection and rotation symmetry pass through the centroid). The measure of asymmetry uses a scaling 

so that the longest distance between the centroid of the configuration and any of the landmarks is set to 

10 [269] or 100 [268,271,272]. An alternative scaling method sets the average of the distances between 

the centroid and each of the landmarks to 1.0 [273]. 

Because this measure of asymmetry is based on a minimization of the sum of squared distances 

between the original and symmetrized configurations of points, it is, up to a scaling factor that is specific 

to each configuration, identical to the Procrustes distance between the original configuration and the 

symmetric consensus computed with the Procrustes approach for complex symmetry [14]. The 

symmetric shape produced by the folding and unfolding algorithm is the same as that produced, for the 

same starting configuration and its transformed and relabeled copies, by the Procrustes approach. In 
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essence, the folding and unfolding algorithm does the same as the Procrustes approach, but uses 

transformed copies of just one of the repeated parts instead of the whole configuration. 

 

Figure 14. The continuous symmetry measure for a configuration of points with 

disymmetry. (a) The configuration of landmarks. For simplicity, there are only four points, 

one per quadrant, but the method is suitable for any number of landmarks in each repeated 

unit; (b) The folding algorithm. All points are transformed so that they end up in the  

upper-right quadrant: the upper-left point is reflected about the vertical axis, the lower-right 

point is reflected about the horizontal axis, and the lower-left point is reflected about both 

axes (or, equivalently, rotated about the centroid by 180°). The average position of the 

transformed points is then computed (red dot); (c) The unfolding algorithm. The point 

obtained as the average of the “folded” points is copied and transformed back to all four 

quadrants. This is the reverse of the folding step, but applied to the consensus and therefore 

produces a perfectly symmetric shape; (d) A comparison of the original configuration and 

the symmetric configuration obtained from folding, averaging and unfolding.  

A major difference to the Procrustes approach [14] is that the measure of asymmetry indicates the 

magnitude of difference to perfect symmetry for each configuration, but because it considers one 

configuration at a time, it has no way to distinguish fluctuating and directional asymmetry [273]. For 

that purpose, the Procrustes approach is much better suited because it can handle any number of 

configurations simultaneously and thus derive averages of asymmetry and characterize the variation 

among the symmetric consensus configurations for the different specimens. 

One of the major purposes of the measure in the context of chemistry was to choose between different 

types of symmetry. The measure of symmetry was designed to help select a type of symmetry that best fits 

a configuration of points [268]. The type of symmetry may be unclear for molecular structures, but for most 

morphological structures, anatomical or developmental evidence is decisive about the type of symmetry. 

Therefore, searching for a best-fitting type of symmetry is not a frequent task in biological applications. 

4.7.2. Measure of Asymmetry for Rotational Symmetry in Flowers 

A variant of this method was developed specifically for quantifying floral asymmetry [270,274]. This 

method is using the deviations from a regular polygon for a single set of landmarks that correspond to 

each other under the rotations in the symmetry group [270]. The resulting measure of asymmetry is also 

based on squared deviations of landmarks from a regular polygon obtained by a computation that is 

similar to the folding–unfolding algorithm [268]. As long as a single landmark per petal is used, this 
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method does not distinguish between purely rotational symmetry and radial symmetry (including 

rotation and reflection).  

This method has been applied to quantify the asymmetry in flowers of Geranium  

robertianum [270,274], which are radially symmetric and have five petals. One landmark at the tip of 

each petal was used and the asymmetry measure was computed for each flower as the deviation from a 

regular pentagon. To evaluate the method, this measure was compared with an alternative measure that 

considers the variation among petal lengths within each flower, and both measures were significantly 

correlated in a sample of flowers [270]. The asymmetry measure was correlated with measures of 

reproductive investment, as flower size and amount of pollen decreased with increasing asymmetry [274]. 

4.8. Outline Methods 

When morphological structures have no or very few landmarks that can be located precisely, an 

alternative is to use morphometric methods that characterize variation of biological shapes using outlines or 

surfaces. Examples of methods for this include Fourier analyses [275–277], eigenshape analysis [278–280], 

semilandmarks [202,205,281,282], and a variety of methods of superimposing 3D surfaces to an overall 

best fit [104,203,204,283,284]. Note that, even though some authors have claimed that such methods are 

“homology-free” [285], all these approaches are based in one way or another on a one-to-one 

correspondence of points on the outline or surface, which is the basis for the computations of mutual fit 

or difference between shapes [286]. Different methods are making different assumptions about this 

correspondence or use it in different ways. As a consequence of these assumptions about the 

correspondence of points and of the calculations used by the different methods, some of them are related 

to each other and produce similar or identical results, whereas others may provide different results when 

applied to the same data [277,287–290]. 

When applied to structures with matching symmetry, analyses of outline or surface data do not differ 

fundamentally from the landmark methods discussed above. Asymmetry can be computed as left–right 

averages of the scores in an outline analysis, and variation among individuals can be characterized as the 

averages of both sides after the outline or surface on one side has been reflected. Studies of this kind have 

been done using elliptic Fourier analysis [291,292], eigenshape analysis [293], semilandmarks [87,169,171], 

and 3D-surface superimposition [104]. 

For structures with object symmetry, the information regarding symmetry and asymmetry is 

contained in a single outline or surface. It is possible to apply the same strategy as for landmark data 

(Figure 7): for each specimen, the original outline or surface and its mirror image are included together 

in the analysis that superimposes outlines or surfaces. If identified landmarks are playing a role in the 

superimposition procedure, these need to be relabeled before the superimposition. Following this, 

asymmetry can be quantified as the difference between the original and reflected outline or surface. This 

method has been used with semilandmarks for 2D outlines [148,294,295] and with 3D surfaces [204,296]. 

A similar idea was the basis for an ad-hoc method to determine the asymmetry in a single outline contour 

using image analysis [297]. 

For analyses of symmetric outlines using elliptical Fourier analysis, Iwata et al. [298] observed  

that one set of parameters from the Fourier decomposition of the total variation contains a component of 

perfectly symmetric variation, whereas the remaining parameters characterize asymmetric variation. 
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This method for separating symmetric and asymmetric components of variation has been used in studies 

to characterize asymmetry and shape variation in plant leaves and other structures [191,260,299–304]. 

4.9. Practical Problems for Analyses of Shape Asymmetry  

There are a few practical problems that concern many morphometric studies, but are especially 

important in studies of fluctuating asymmetry because they focus on variation that is fairly subtle. For 

this reason, investigators should pay attention to possible artifacts from specimen preparation and to 

measurement error. How specimens are aligned in relation to a camera or other measuring device is a 

particularly important factor, especially when collecting 2D data from specimens that are actually  

three-dimensional. Finally, there are a few organisms where it is not entirely clear what is up or down, 

left or right—clearly a crucial problem when a study is about asymmetry. 

Another practical point of the utmost importance for studies of asymmetry, if there is matching 

symmetry, is that the parts of the left and right sides must be identified correctly and kept separate. This 

can be tricky, for instance, for the wings of small insects that need to be mounted on microscope slides, 

but it is crucial for the further steps in the study. Mix-ups among sides can invalidate the analyses and 

may lead to failure to detect directional asymmetry even if it exists in the sample at hand, and they also 

confound fluctuating and directional components of asymmetry. If samples have been collected for 

purposes where the effects of side are not of interest, for instance taxonomy, and it is not certain that the 

sides have been distinguished properly for all specimens, such samples should better not be used in 

studies of asymmetry. If using such samples is inevitable, investigators should make clear this fact and 

note that it is not possible to disentangle the effects of fluctuating and directional asymmetry. 

4.9.1. Preparation and Preservation of Specimens 

Many studies of fluctuating asymmetry use museum specimens or newly collected specimens that 

have been preserved in various ways. For instance, many studies have used dried material such as 

herbarium specimens, dried insects or bones. For delicate specimens, drying can result in serious 

distortions, for instance bending of the legs, antennae and wings of dried insects or warping of delicate 

bones (e.g., fish). Similarly, pressing and drying plant leaves can affect their shape noticeably [305] and 

may therefore have serious effects on studies of asymmetry. Many other types of specimens need to be 

stored in liquids such as ethanol or formalin, which changes tissue properties and also affects length 

measurements [306] and shape [307,308]. Even freezing can affect the shape of fish significantly [308]. 

Naturally, such artifacts from preservation are most serious for soft tissues such as embryos [309] or 

brain tissue [310]. Similarly, very small specimens such as mites [128] or the wings of parasitoid wasps [129] 

need to be mounted on microscope slides, which may produce artifacts due to the positioning of 

specimens on the slide or distortions due to the pressure from the coverslip.  

To avoid misleading results in studies of fluctuating asymmetry, it is sometimes possible to prevent 

such artifacts altogether by using fresh specimens. If that is not possible, it is often feasible to minimize 

artifacts by choosing different procedures and to quantify the magnitude of effects. For instance, it is 

possible to humidify dried insect specimens to flatten their wings before taking images [311], a 

procedure that, at least to a large extent, reverses the effects of drying. 
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A particularly vexed problem about artifacts from preparation or preservation is that they tend to be 

irreversible, and therefore cannot be quantified by repeating the procedure and measurements. It may be 

possible to make measurements before and after preservation [305,307–310], which makes it possible 

to quantify any artifacts and to their magnitude in relation to the biological effects under study. An even 

better option is to avoid preservation altogether. For instance, for morphometric studies of leaf shape it 

is often feasible to use fresh material, possibly placing leaves under a glass plate to flatten them gently 

before taking images. All the steps in the procedure of positioning a leaf and taking images are 

repeatable, so that it is possible to estimate explicitly the effect of positioning in relation to the shape 

variation and asymmetry in the data. Such repeats can be analyzed in the same way as other components 

of measurement error. 

The effect of preparation procedures is not always negative. Treatments such as removing scales or 

hairs from morphological structures or staining to enhance the contrast of different tissues can enhance 

the precision of landmark positions [312]. The decisions about such procedures are probably best based 

on pilot studies exploring different options of preparation. 

4.9.2. Measurement Error 

The literature on fluctuating asymmetry has long considered measurement error as a serious issue and 

therefore discussed possible procedures to quantify and minimize its effects [2,153,155,313]. With the advent 

of geometric morphometrics, the same concerns need to be addressed in studies of shape [11,13,314–317]. 

Measurements result from an interaction of the objects under study, the equipment used and the observer 

making the measurements. In addition, various steps of preparing specimens can also have an influence 

on the outcome. Therefore, all these factors need to be taken into consideration as possible sources of 

measurement error and for devising strategies to minimize it. 

There are two types of measurement error: systematic error and random error. Systematic error affects 

all measurements made by a particular observer with the give equipment in the same way—there is a 

consistent, systematic deviation from the true values. By contrast, random error affects each individual 

measurement differently, and deviations of measurements from true values are in all directions (but not 

necessarily in equal amounts in all directions). The distinction of systematic and random error is useful 

because dealing with them requires different strategies. In general, systematic error can be reduced by 

appropriate set-up of equipment and careful calibration, whereas the effects of random error can be 

mitigated by making repeat measurements and averaging the resulting values. Both kinds of error can 

affect studies of asymmetry. 

There are several sources of systematic error that can affect asymmetry studies. Some of them are 

widely known [315], such as the distortions by low-quality lenses, particularly wide-angle lenses, and 

parallax (the effects of viewing a specimen at an oblique angle, not exactly in alignment with the median 

plane; particularly relevant are the inclined optical paths of standard dissecting microscopes that are 

designed to provide 3D vision of objects, but not exact photography). It is relatively easy to avoid optical 

distortion by not using wide-angle lenses and positioning the camera as far as possible from the object, 

so that optical paths to all parts of the object are nearly parallel. Also, taking an image of a rectangular 

grid can provide a useful test for distortions (particularly near the margins of the image). 3D measuring 

equipment should be calibrated with objects of known dimensions (simple shapes such as cubes are 
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particularly suitable). Not only the optics, but also other equipment can produce systematic errors: for 

instance, light sources that result in unequal illumination of different parts of the specimens. 

There are some sources of systematic errors that are particularly relevant for studies of asymmetry. 

For digitizing equipment that is operated by hand, such as the MicroScribe 3D digitizer, the handedness 

of the observer conceivably can make a difference: a right-handed observer might point the tip of a 

digitizing arm to the positions of landmarks on the left and right sides of a skull in slightly different 

ways. Digitizing a perfectly symmetric object (if the structure has object symmetry) or exact mirror 

images (if the structure has matching symmetry) is a test for this effect (the test object should be as 

similar as possible to the structure under study—such objects might be generated with a 3D printer, 

provided it is sufficiently precise itself). Likewise, there might be subconscious biases when locating 

landmarks on images or scans of the left and right sides of biological structures. To assess this effect, it 

is useful to compare the landmark data to data digitized on images or scans that have been transformed 

to mirror images (for matching symmetry, it is even possible to reflect all images from one side in this 

way to avoid such a bias). This kind of systematic error is particularly serious for asymmetry studies 

because it could conceivably generate a systematic bias in the data that would be impossible to 

distinguish from subtle directional asymmetry. 

A different source of systematic error that is important for morphometric studies is the definition of 

landmarks. Different observers may pick slightly different points based on the same definition of a 

landmark. Intersections of linear features such as cranial sutures of vertebrates or wing veins of insects 

seem to offer very precise definitions of landmarks, but even these structures have a certain width (and 

there are other complicating factors in many cases), so that there is a degree of ambiguity about the 

definition. It is helpful to write down a very precise description of the procedure used to locate each 

landmark. This will help to minimize the differences between the actual landmark definitions used by 

different observers or the changes over time for each individual observer. But even these detailed 

descriptions cannot completely eliminate this sort of difference. The effect of such differences can be 

tested by comparisons between measurements of the same objects made by different observers or by the 

same observer at different times. 

Random error originates from many steps in the procedures for acquiring images or scans of 

specimens and locating landmarks. This can include the positioning of specimens relative to a camera, 

variation in the level of focus or inaccurately focused images, heterogeneous illumination, the pixelation 

of images (this is no longer a real problem with optical images, as high-resolution digital cameras now 

are inexpensive, but it can be a real problem for computed tomography and especially magnetic 

resonance images), and the accuracy of the observer in locating the landmarks. Different factors can 

interact: for instance, the observer may be less accurate for images that are somewhat blurred or 

badly illuminated. 

To quantify random errors and to reduce their effects on subsequent analyses, investigators can repeat 

measurements of the same specimens [2,11,13,153,155,315]. Differences between replicates result from 

measurement error and averages of the repeats can provide values that are less affected by measurement 

error. It is important that all the steps of the data acquisition procedure are repeated, because all of them 

can contribute to measurement error. If just the digitizing of landmarks from images or scans is repeated, 

all components of error that stem from the other steps are ignored and the resulting estimates of 

measurement error may be grossly overoptimistic. For instance, in a simple study where the investigator 
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first takes images of specimens and then locates landmarks in the images, both steps should be replicated 

(Figure 15). 

 

Figure 15. Hierarchical scheme for repeats of data acquisition steps to estimate error. 

The example uses a simple morphometric study where images of specimens are taken and 

landmarks are digitized from the images. For each specimen in the sample, two (or more) 

images are taken independently, including separate repeats of procedures such as the 

positioning of the specimen under the microscope or camera. Then, each of the images is 

digitized twice (or more). 

A key question in the design of such an analysis of measurement error is how many replicates should 

be used at each level. In the example, two replicates are used for both the imaging and digitizing steps 

(Figure 15). This is the minimum of replication, which allows the investigator to use a bigger sample of 

specimens for the analysis with a given amount of total effort. Because measurement error should be 

assessed relative to fluctuating asymmetry and possibly the variation among individuals, a reasonable 

possibility is to use two replicates for each level in the hierarchy (Figure 15). Therefore, two replicates 

of each lower-level effect provide one degree of freedom within each level of the next-higher effect (e.g., 

one degree of freedom for the digitizing error within each image, one degree of freedom for the imaging 

effect within each specimen). With two replicates per level, a relatively large number of specimens can 

be included, so that the estimates for fluctuating asymmetry and variation among individuals also are 

reasonably precise. This design is preferable over analyses using one or a few specimens with many 

replications—such a design produces a good estimate for measurement error, but not for the biological 

variation. Also, taking many replicates of the same few specimens brings the danger that the observer, 

consciously or subconsciously, remembers peculiarities of landmarks on those few specimens and 

therefore may obtain measurements that appear more precise than those made on unfamiliar specimens. 

This would yield overoptimistic estimates of measurement error.  

To analyze the repeated measurements and quantify components of measurement error, both for 

specimens with matching and object symmetry, Procrustes ANOVA (Section 4.4) is a flexible and 

powerful tool [11,13]. The hierarchical nature of the replicated data (Figure 15) implies that 

measurement error enters the ANOVA model as one or more nested effects, as it has been done 

traditionally in ANOVAs for studies of asymmetry of length measurements [2,153,155]. For instance, if 

two images of each specimen are taken and each image is digitized twice (Figure 15), the effect of images 
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is nested within the individual-by-side interaction and the digitizing effect is nested within images 

(Table 1).  

The key question concerning measurement error is not whether fluctuating asymmetry is statistically 

significant in the Procrustes ANOVA, because that means only that some fluctuating asymmetry is 

discernible despite the measurement error. Of course, such statistical significance is required for 

subsequent analyses to make sense, but it is not enough (if fluctuating asymmetry is not statistically 

significant, measurement procedures should be improved, and more replicates and ideally a larger 

sample size should be used). The main question of interest is how much greater fluctuating asymmetry 

is than the measurement error. The answer can be obtained from the F ratio for the individual-by-side 

effect (the ratio between the mean square of the individual-by-side interaction and the highest 

measurement error effect). If this ratio is high, such as the value of 25 in the example of Table 1, it is 

reasonable to say that measurement error is negligible. If such a result is obtained in a pilot study, it is 

debatable whether replicates are really necessary for the main data collection. If the ratio is lower, 

however, replication and averaging of the resulting values is necessary throughout the whole data 

collection in order to obtain sufficiently precise estimates of fluctuating asymmetry. 

For pilot studies, a sample size in the order of 20–30 individuals, with twofold replication of the 

measurement and replication steps, is usually reasonable. Such a sample size is sufficient to provide 

reasonable estimates of Procrustes sums of squares and mean squares for fluctuating asymmetry and 

variation among individuals (note, however, that bigger samples are required for estimating the 

multivariate patterns of covariation for those effects). If the estimates of measurement error from such a 

pilot study turn out to be relatively big, replicating three or four times for the main data collection may 

be reasonable. Conversely, if measurement error is negligible relative to fluctuating asymmetry, the main 

data collection may be conducted without replicate measurements, to enable the researchers to use larger 

sample sizes with comparable effort (this seems reasonable for the example in Table 1, where fluctuating 

asymmetry exceeds imaging error by a factor of 25). 

The ANOVA design with replicate measurements can further be used to compute matrices of sums 

of squares and cross products (SSCP) for the different levels of measurement error. Multivariate analyses 

of SSCP matrices of measurement error, for instance, principal component analyses, can reveal patterns 

of relative landmark shifts in the variation due to measurement error. These patterns can be informative 

about the nature of the measurement error. For instance, if the first or the first few principal components 

for digitizing error are dominated by relative displacements of a single landmark or a few landmarks, 

this is an indication that those landmarks may be difficult to localize. Improving the definition of the 

landmarks or, at worst, excluding the landmarks may reduce the level of error. 

The analyses described here have all focused on the effect of measurement error on shape,  

rather than measurement error of individual landmarks, which has also been called “landmark  

error” [314,317,318]. Because such studies often focus on a few specimens that remain fixed over a 

series of repeats, these studies capture only a part of the total measurement error that occurs during 

normal data collection. Such analyses can be useful for refining landmark definitions or for evaluating 

measuring equipment. They are perhaps less suited, however, for evaluating measurement error such as 

it applies to studies of fluctuating asymmetry, where the primary question of interest is to understand the 

error that occurs during the routine data collection. Also, because the main concern is about the possible 
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consequences of measurement error on the results of morphometric analyses, the effect on overall shape 

is more directly relevant than the imprecision at individual landmarks. 

4.9.3. Two- versus Three-Dimensional Data 

There are some biological structures that are flat, such as many (but not all) insect wings and plant 

leaves, so that morphological variation can be captured as 2D coordinates of landmarks without loss of 

any relevant information. The majority of biological structures, however, are fully three-dimensional. 

Representing them in 2D images involves a projection from the original three dimensions to two, 

resulting in an obvious loss of information. That 3D data should be used for studying 3D biological 

structures has long been pointed out in the morphometrics literature [319]. Yet, because 2D images are 

cheaper and quicker to collect than 3D morphometric data [320] and because the results from analyses 

of 2D data are easier to visualize [196], many morphometric studies continue to use 2D data for  

3D structures. 

A particularly serious problem is how to align the specimen relative to the camera or microscope. For 

morphometric analyses in 3D, this is not a problem because the Procrustes superimposition will find the 

optimal rotation in 3D, but if 2D images are made, the effects of the alignment are irreversible because 

the third dimension is irretrievably lost. For an intuitive appreciation of the problem, imagine a football 

with various areas of different colors and consider how they change if you rotate the ball slightly in 

different directions. The rotations produce various complex distortions of the shapes of the colored areas. 

Similar complex distortions occur if the alignment of a 3D morphological structure relative to a camera 

is altered.  

The best option seems to use a set of specific landmarks to align the specimen in a precisely specified 

orientation—for instance, it is possible to align all specimens so that the plane defined by three specific 

landmarks is perpendicular to the axis of view of the camera (parallel to the image plane). A consequence 

of this procedure is that variation in the positions of those three landmarks relative to the other landmarks 

results in a change of the alignment of the whole structure. Therefore, even strict standardization of the 

alignment is not necessarily a complete solution to the problem (unpublished data indicate that this effect 

can be serious for analyses of fluctuating asymmetry). 

Some studies, although concerned with variation among individuals and not asymmetry, have tried 

to remove the effects of variable alignment by projecting the shape data onto a subspace orthogonal to 

the effects of those rotations [321,322]. Because the effects of rotations are expected to be some 

trigonometric functions of the angles of rotation and trigonometric functions are markedly nonlinear, the 

linear approach of eliminating variation in some directions is at best an approximation. Moreover, 

because this method eliminates all the shape variation in the directions deemed to represent the effects 

of rotation, it harbors the danger that some genuine biological variation is also eliminated. For studies 

of asymmetry, which need to consider subtle morphological variation, this approach appears to be  

too crude. 

In summary, while using 2D data for 3D structures may be possible for studies of variation among 

individuals and taxa with the appropriate caution [320], this is problematic for studies of fluctuating 

asymmetry. Equipment and methods for 3D data acquisition have become much more efficient and 

affordable in recent years, so that many of the arguments for using 2D data no longer apply. The perils 
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of “flattening” 3D structures into 2D images appear to be substantial, making 3D the better choice for 

studies of fluctuating asymmetry. 

4.9.4. Structures Lacking a Clear Orientation 

Some structures or entire organisms do not have unambiguous front and back, up and down, or left 

and right sides. Examples are some unicellular algae [24], which appear identical when they are flipped 

over and where thus the left and right sides are interchangeable (as an equivalent, imagine a coin with 

heads on both sides). Similar problems apply to some flowers that are radially or rotationally symmetric 

and grow in terminal positions on a shoot, so that they do not have a clear adaxial or abaxial side. 

These structures cause problems for the data collection and analysis. For the data collection, this 

situation has the consequence that the correspondence of landmarks is ambiguous. Defining a 

correspondence of landmarks therefore usually involves some arbitrary decision, such as assigning the 

side that is at the top of an image to be the “dorsal” side. Other correspondences then follow 

automatically (e.g., the “left” and “right” sides).  

For the analysis, the ambiguity of correspondence makes it impossible to separate the components of 

fluctuating and directional asymmetry. The only possibility is to consider just the total asymmetry as the 

deviation from perfect symmetry. For the Procrustes ANOVA, this means that the effect that relates to 

ambiguous correspondence of landmarks (usually the effect of “side”) should be included as an effect 

nested within the effect of individuals (and not as a fixed effect as usual). 

5. Fluctuating Asymmetry and Developmental Instability 

Traditionally, fluctuating asymmetry has been used as a measure of developmental  

instability [1–6,153,155], which can be correlated to various environmental or genetic factors. Such 

studies have mostly used measurements of different lengths as traits. It is therefore of interest how the 

justifications for such a use of fluctuating asymmetry applies to shape. 

This section first revisits the central argument that fluctuating asymmetry is an expression of 

developmental instability by reviewing its developmental origins. I then review applications that have 

related fluctuating asymmetry of shape to measures of stress and genetic quality. Since the advent of 

geometric morphometric studies of fluctuating asymmetry, many studies have used these methods to 

investigate whether developmental stability and canalization share the same patterns or whether they 

may be based on distinct sets of processes. Finally, this section provides an overview of studies that have 

investigated the genetic basis of fluctuating asymmetry of shape, and it examines some ideas on the 

special role of plasticity for fluctuating asymmetry of sessile organisms. 

5.1. The Central Argument: Fluctuating Asymmetry as a Measure of Developmental Instability 

The central argument why fluctuating asymmetry is a measure of developmental instability [150] is 

based on the assumption that corresponding structures on the left and right side are independent copies 

of a structure that develop under the control of the same genome and under the same environmental 

conditions. If development were a completely deterministic process, corresponding organs on different 

body sides would develop as identical copies of each other, both showing the “target phenotype” [151] 
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for the particular genome and environment of a given individual. Because developmental processes are 

not completely deterministic, however, random fluctuations in developmental processes can cause 

deviations from the target phenotype. Such differences can occur because of the stochasticity of 

molecular processes due to the low number of copies of DNA and many other molecular species within 

cells and can translate to variability across developing tissues and organs [323–327]. Because the two 

copies of a structure on the left and right side (or different numbers and arrangements of copies for 

complex symmetries) develop separately from each other, the random fluctuations of developmental 

processes affect each copy separately and are thus likely to produce deviations from the target phenotype 

that are different from copy to copy. As a result, even if the copies of the same organ share the same 

genome and environment, there inevitably will be small phenotypic differences between them that 

manifest themselves as measurable asymmetries. Those asymmetries can be used as indicators of 

developmental instabilities. 

This argument makes several assumptions that are not necessarily met by real biological systems. The 

first of these assumptions is that the left and right copies of a structure are equivalent and thus have the 

same target phenotype. This is the same as assuming that there is no directional asymmetry, an 

assumption that is clearly wrong in many instances, because directional asymmetry has been found in 

many empirical studies and seems to be a very widespread phenomenon [15] (see Section 3.1). As a 

result, the argument needs to be modified slightly: the target phenotypes for the left and right sides are 

not equal, but can differ. As long as a homogeneous population is available so that the target phenotypes 

can be estimated as the average values (an estimate of the expected phenotypic value), the deviations of 

individual asymmetries from the average asymmetry, fluctuating asymmetry, can be used as an indicator 

of developmental instability. This is the correction for directional asymmetry that is inherent in the two-factor 

ANOVA model that has traditionally been used in studies of fluctuating asymmetry [2,152,153,155], 

including studies of shape asymmetry using geometric morphometrics [11,13] and in the measures of 

fluctuating asymmetry based on Procrustes or Mahalanobis distance [239]. 

The assumption that the left and right sides share the same genome implies that somatic mutations 

are negligible. This may be a reasonable assumption, although somatic mutations have been 

demonstrated in genome-wide surveys and are known to accumulate with age in mammals [328–330], 

but it is unclear how much they may contribute to normal phenotypic variation. For plants, where ample 

opportunity for somatic mutation exists and extensive research on genetic mosaicism has been 

conducted, Herrera [262] reviewed the available evidence and concluded that such genetic variation is 

only rarely responsible for appreciable portion of within-individual variation. Overall, with some 

caution, it is thus plausible that left and right sides share essentially the same genetic control of 

developmental processes. 

The assumption that the left and right side share the same environment is more problematic. Many 

environmental factors are heterogeneous at a spatial scale that might generate within-individual 

variation, including differences between the left and right sides of individuals. If phenotypic traits show 

a plastic response to such heterogeneity, some of the observable fluctuating asymmetry may be due to 

phenotypic plasticity rather than developmental instability. This possibility has been emphasized in the 

literature on fluctuating asymmetry before and is especially acute for sessile organisms such as  

plants [27,151,155,173,243]. For motile organisms, which move through their environment during their 

development, it is plausible that such heterogeneities will average out so that plastic responses to 
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environmental differences between sides are negligible. With appropriate caveats, for many organisms, 

fluctuating asymmetry can indeed be viewed as the result of minor random variations in developmental 

processes and is therefore appropriate for quantifying developmental instability. 

The reasoning presented here is based on the assumption that developmental differences between 

sides are small and both sides of an individual are within the range of normal development and 

phenotypic outcomes. Asymmetries due to more serious disruption of developmental processes, which 

may lead to malformations of organs, are likely to be different in their origin as well as their consequences. 

An example are deformities of the opercle in fish that can lead to pronounced asymmetries of head shape, 

but also have consequences on the shape of the whole body [331]. These changes may be closer to the 

consequences of mutations that disrupt developmental processes and thus can result in gross 

morphological defects [62,332,333]. Nevertheless, such phenotypes can provide valuable insights into 

development and evolution [334]. 

5.2. Developmental Instability versus Canalization: One or more Mechanisms for  

Developmental Buffering? 

In many instances, fluctuating asymmetry is very subtle, as there seems to be a high degree of 

developmental precision in achieving target phenotypes. A study that quantified these effects on the 

positions of wing veins in flies reared under controlled laboratory conditions calculated that their scale 

was less than the diameter of a single cell [335]. Accordingly, the developmental processes that form the 

structure seem to be remarkably precise.  

This precision raises the question of the nature of the processes involved. Are developmental 

processes inherently stable, so that there is little variation in the first place, or are there specific processes 

that act as buffers so that variation in earlier stages of development is not expressed as observable 

variation in the resulting phenotype? Are there specific processes that generate and buffer against such 

variation or are developmental “noise” and robustness simply a side-product of the functioning of 

developmental systems? The answers to these questions are still unclear. Some theoretical simulation 

studies have pointed out the remarkable robustness of specific systems [336], whereas others suggested 

that the nonlinear interactions in developmental systems are sufficient to control developmental 

buffering [160].  

Some empirical studies, using geometric morphometric methods, focused on molecular chaperones 

such as Hsp90 and other heat shock proteins [124,126,177,337] and genes involved in various ways in 

the development of the structures under study [62,332,338] and found variable effects of those genes on 

shape asymmetry. Additional studies have found pronounced effects of mutations in various genes on 

the fluctuating asymmetry in the size of structures and, even though they have not specifically 

investigated shape, sometimes found evident asymmetries of shape [333,339,340]. The observation that 

some of these effects depend on the genetic background [177] suggests that interactions among multiple 

components of the developmental system are important. In addition to these experiments based on 

candidate genes, studies using genome scans have tended to find distributed effects with unclear relations 

to specific processes [77,125]. Overall, therefore, a variety of processes may be involved in generating 

and buffering against developmental variation that manifests itself as fluctuating asymmetry. 
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It is important to keep in mind that the fluctuating asymmetry observable in morphological structures 

is the combined effect of the developmental fluctuations and any mechanisms that might buffer against 

them. Untangling the contributions of the developmental “noise” and the effects of buffering is very 

difficult, because they are inevitably intertwined in the observable variation. Some rare glimpses on the 

relative contributions of the two processes are provided by quasi-experimental situations like diseases 

causing localized perturbations of development [35] or actual experimental manipulation altering 

development on one side of the structure [341,342]. Nevertheless, much about the specific mechanisms 

involved in the origin of developmental fluctuations and the buffering processes that counteract them 

remains unclear. 

It is possible, however, to gain useful biological insights even from the aggregate effect of 

developmental noise and buffering. Some further evidence on the nature of developmental stability and 

canalization is available from comparisons of fluctuating asymmetry and individual variation over 

different ages [343–348]. Studies using the methods of geometric morphometrics found fluctuating 

asymmetry of fetal mice to decrease with age [251] or reported diminishing individual variation over 

early postnatal development in various rodents [219,349,350]. There is also unexplored potential for 

future analyses of the regulation of shape variation, because some studies used longitudinal data [349,351]. 

Analyses that explicitly address the covariation among the changes between successive ontogenetic 

stages can shed light on regulatory phenomena, but so far have only been used with traditional 

morphometric data [352–357]. 

Because geometric morphometric approaches offer the possibility to visualize and compare the 

patterns of covariation among landmarks, they have been used prominently to investigate the nature of 

developmental buffering and have stimulated new questions and ways to answer them. In particular, 

morphometric methods have been used widely to address the question whether developmental stability, 

the buffering against intrinsic developmental fluctuations, and canalization, the buffering against 

environmental and genetic variation among individuals, are based on the same process or whether 

different mechanisms are involved. Because morphometric analyses of asymmetry provide separate 

estimates of the patterns of individual variation and fluctuating asymmetry [11,13], it is possible to use 

comparisons of these patterns as a way of examining whether canalization and developmental stability 

are based on distinct processes or whether they may have a common origin [42,175,176]. If the same 

processes are involved at both levels, similar patterns of variation are expected. By contrast, a 

discrepancy between the patterns of fluctuating asymmetry and individual variation indicates that 

different processes must be involved. 

Many studies have examined the relation between developmental stability and canalization by 

comparing covariance matrices for fluctuating asymmetry and individual variation, because the patterns 

of covariation at the two levels provide information on the underlying processes. Comparisons are 

usually conducted with matrix correlations and statistical significance is assessed with matrix 

permutation tests, adapted for landmark morphometrics [11,13,254]. Matrix correlations can either be 

computed from the entire covariance matrix or they can exclude the diagonal blocks of variances and 

covariances of the coordinates of each landmark, depending on whether the variation across the whole 

structure or just the pattern of covariation among landmarks is of interest [13,56]. The matrix 

permutation test uses permutations of landmarks rather than individual coordinates (i.e., the x, y, and 

possibly z coordinates of each landmark are kept together because they are not interchangeable among 
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landmarks) [11]. Some special steps are necessary for covariance matrices between symmetric and 

asymmetric components of variation if the structure under study has object symmetry [13]. Because the 

symmetric and asymmetry components occupy orthogonal subspaces of the shape space of the whole 

structure, whenever there is variation in one of them, there cannot be corresponding variation in the 

other, and all matrix correlations are zero. To avoid this problem and still examine whether the patterns 

of symmetric variation and asymmetry are similar, it is possible to focus just on the covariation among 

the paired landmarks on one side of the structure [13].  

This approach has been applied in a growing number of studies, with somewhat mixed  

results. Many studies have found matrix correlations between covariance matrices for fluctuating 

asymmetry and individual variation that are statistically significant, but of rather variable  

strengths [11,16,44,49,55,56,67,72,79,82,97,106,119,139,167–169,172,173,177,358]. A few studies 

have reported a mix of significant and non-significant results for analyses of multiple samples or 

structures [54,75,120,174], and some other studies found only non-significant test results [13,42,73,78]. In 

a majority of studies, therefore, there seems to be some degree of resemblance between the patterns of 

fluctuating asymmetry and individual variation, but usually no perfect congruence, and in some cases it 

is not possible to rule out the null hypothesis that they are altogether unrelated. 

What conclusion can be drawn from these studies? The variable outcomes of different analyses have 

led authors to draw different conclusions, ranging from the possibility that developmental stability and 

canalization are independent of each other [42] to the suggestion that they may share the same 

developmental basis [56]. Just counting the number of studies that did or did not find significant matrix 

correlations between covariance matrices of fluctuating asymmetry and individual variation cannot settle 

the debate because it ignores the great variation in the strength of association among the studies with 

positive results. It is therefore preferable to withhold general conclusions on the relation between 

developmental stability and canalization for the time being. 

5.3. Developmental Instability of Shape in Relation to Stress and Genetic Quality 

The goal of many studies of fluctuating asymmetry has been to use it as a measure of  

developmental instability for correlating it with various measures of stress, individual quality, and  

fitness [2,153,155,165,243,359–366]. The idea that drives such studies is that stress or inferior quality 

of individuals leads to greater amounts of developmental noise or a diminished capacity to buffer against 

developmental fluctuations, and that individuals with better ability to buffer against developmental 

perturbations are generally more vigorous or resilient and therefore have higher fitness.  

A well-known practical problem with this approach is that developmental instability is difficult to estimate 

from just one measurement each from the left and right sides of an organism—it is essentially the same as 

estimating a variance from just two data points, which is possible but very imprecise [6,158,159,367,368]. A 

possible solution for this problem is to use the fluctuating asymmetry of multiple traits simultaneously 

to improve this estimate [155,369]. Of course, a condition for this approach to work is that the fluctuating 

asymmetries of different traits provide independent information concerning developmental instability, 

which means that the traits should be developmentally independent of each other [155]. 

Because geometric morphometrics considers all aspects of the shape variation in a structure, not just 

particular traits, using it seems an attractive idea to use indices of fluctuating asymmetry of the shape of 
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entire structures as measures of developmental instability. The individual measures of fluctuating 

asymmetry for shape based on Procrustes distance or Mahalanobis distance [11,239] are indices that can 

be used for this purpose (Section 4.5). It is important to note, however, that morphological integration is 

likely to be a significant problem for such studies. Because the parts of morphological structures are 

developing in a coordinated manner, the fluctuating asymmetries of different aspects of shape are not 

mutually independent, but are correlated to a greater or lesser extent. Often, much of the total variation 

is concentrated in just a few of the dimensions of the shape space [179,254], so that the data do not 

occupy much of the theoretically available dimensionality. In other words, morphological integration 

acts as a constraint that makes some aspects of shape variation biologically inaccessible. Whereas this 

structured variation provides an opportunity for using fluctuating asymmetry to investigate the 

developmental basis of morphological integration (Section 6), it can impede the use of individual 

measure of fluctuating asymmetry as estimates of developmental instability.  

Nevertheless, a growing number of studies have used the individual measures of fluctuating 

asymmetry of shape and correlated them with various measures of environmental or genetic stresses and 

individual quality. Because of the wide range of questions that have been addressed and the diverse 

organisms used in these studies, it is fairly difficult to summarize the results. 

Environmental stress has been the focus of many studies of shape asymmetry. Several studies found 

greater fluctuating asymmetry in disturbed than in undisturbed habitats for skull shape of voles [250], in 

areas of worse rather than better climatic suitability for skull shape of Akodon rodents [370], in urban 

than in rural habitats for head shape of lizards [106], in polluted than unpolluted habitats for crab 

carapace shape [253] and for mandible shape of shrews [371]. Studies of the larval mentum and adult 

wings in chironomid midges showed that pollution in the rearing environment had no or only limited 

effects on fluctuating asymmetry [130,131] or that there was more fluctuating asymmetry in offspring 

reared in unpolluted sediment in the laboratory than in the parental generation collected from polluted 

sediment in the field [103]. Temperature stress had no significant effect on fluctuating asymmetry of 

body shape in bulb mites [372], but fluctuating asymmetry of shape has been shown to be influenced by 

temperature in aphid [164] and Drosophila wings [62,121]. Fluctuating asymmetry for skull shape in 

yellow-necked mice was found to be higher in sites with high radioactive contamination from the 

Chernobyl nuclear disaster than in less contaminated sites [53].  

A number of studies have investigated the effects of toxins on fluctuating asymmetry of shape. In 

experiments with cactus-breeding species of Drosophila, one species had increased fluctuating 

asymmetry of wing shape in the non-preferred cactus host, but other species showed no difference or 

even had greater fluctuating asymmetry in the primary host [118,123]. Additional experiments 

demonstrated that alkaloids in the cactus tissue can cause increased fluctuating asymmetry and abnormal 

wing phenotypes [119]. Not all toxins affect fluctuating asymmetry of shape: an experiment showed that 

even applications of sodium pentachlorophenate that were sufficiently severe to suppress cranial growth 

of zebrafish did not produce increased fluctuating asymmetry of shape [137]. Administering TCDD had 

no effect on fluctuating asymmetry of shape in mouse mandibles, but affected average shape [43], 

whereas the same toxin both increased fluctuating asymmetry and changed the average shape of molar 

teeth [373]. 

Disease can be viewed as a different kind of stress. A very large study examined the correlation 

between fluctuating asymmetry of facial shape in children and their past record for various categories of 
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ill-health, but found no association between facial asymmetry and health [252]. A study of asymmetry 

of human skull shape found that persons who died from degenerative diseases, on average, had higher 

fluctuating asymmetry than persons who died from infective diseases or from other causes [90]. 

In humans, fluctuating asymmetry can reflect the influence of various factors and may correlate with 

behavioral and reproductive traits. In a study using a large combined sample from different Latin 

American countries, several factors were correlated to facial asymmetry: the strongest correlation was 

with age, but ethnic ancestry, heterozygosity, body mass index and height, as well as sex also had 

appreciable and significant effects [108]. Several studies have examined whether facial asymmetry is 

related to whether faces are rated as attractive by the subjects themselves or by other viewers, and some 

found a significant association [57,249,295,374], whereas others found no association [102,105] or a 

weak association only for male but not female faces [247]. Some analyses showed an association 

between fluctuating asymmetry and facial femininity or masculinity in humans [375], but others did  

not [102,374], nor was there a correlation between femininity or masculinity of skull shape and 

fluctuating asymmetry in baboons, chimpanzees, and gorillas [110]. Also, no correlation was found 

between facial fluctuating asymmetry and the ratio of second to fourth digits, which relates to prenatal 

exposure to sex hormones [375,376]. By contrast, short-term effects of hormonal levels on asymmetry 

have been shown, as the asymmetry of facial shape changes during the menstrual cycle of individual 

women [294]. Finally, some human behavioral traits are also correlated with fluctuating asymmetry of 

facial shape, such as the tendency to cooperate or defect in the “prisoner’s dilemma” game [374,375], 

some aggressive behaviors in adolescents [248], and personality traits [377,378]. 

Fluctuating asymmetry of shape has also been related to reproductive traits and fitness in a few studies 

from a very wide range of organisms other than humans. For bulb mites, a negative relation between 

fluctuating asymmetry and fecundity was found, indicating that more symmetric individuals tend to have 

more offspring, but it was statistically significant only in one of two generations included in the study [128]. 

A study of parasitoid wasps yielded no evidence for an association between fitness and fluctuating 

asymmetry of wing shape [129]. Similarly, in humans, no significant correlation was found between 

fluctuating asymmetry of facial shape in postmenopausal women and the number of their children or 

pregnancies [295]. In plants, one study presents evidence that asymmetry of floral shape is correlated 

with measures of overall plant vigor and pollen number and viability, and also that it may affect the rate 

of visits by pollinators [274]. Also, asymmetry of the winged fruit of ash trees can affect flight duration 

and thus dispersal distance [300]. Overall, these few studies suggest that the link between fluctuating 

asymmetry of shape and reproductive fitness is rather tenuous, but more and larger studies may 

be worthwhile. 

Another traditional field of application for fluctuating asymmetry is its relation to  

heterozygosity [379]. Several studies have used the shapes of mouse skulls and mandibles from hybrid 

zones, with rather variable results, including reduced fluctuating asymmetry in hybrids [42], no 

difference [60] or asymmetric patterns including a gradient [70]. Relations between fluctuating 

asymmetry of shape and hybridization have also been observed in other systems, including oak  

leaves [148], Drosophila wings [120,122], but not in some others such as Triatoma bugs [76].  

Heterozygosity relates to population genetic structure and has clear implications for conservation, 

and its relation to fluctuating asymmetry is also of interest in that context. There is a negative correlation 

between heterozygosity and fluctuating asymmetry of shape for the mandibles of shrews on Scottish 
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islands and the mainland, but this relation is substantially influenced by the population on the smallest 

island, where heterozygostity and asymmetry are highest [61]. In increasingly fragmented habitats, 

different species of insects seem to respond differently in terms of the fluctuating asymmetry of  

shape [81,136]. Finally, heterozygosity is also one of the factors that has been found to influence 

fluctuating asymmetry of facial shape in humans [108,134], but a large study in a European population 

found no association between heterozygosity and asymmetry [380]. 

Overall, these correlations of fluctuating asymmetry with various measures of stress or genetic quality 

are very heterogeneous and many are rather tenuous. Whereas fluctuating asymmetry of shape is 

relatively easy to measure, these results suggest that, despite its multivariate nature [369], it is not a 

reliable indicator of environmental stress or genetic quality. 

5.4. Allometry in Fluctuating Asymmetry 

One of the factors that can influence the pattern and amount of fluctuating asymmetry is allometry, 

the relation between size and shape. This can occur in different ways: differences in size of whole 

organisms can have an effect on the developmental instability and thus the fluctuating asymmetry, or the 

fluctuating asymmetry of size may be associated via an allometric relation with fluctuating asymmetry 

of shape. 

The first type of size dependence of fluctuating asymmetry, where the size of the whole organism or 

of the trait under study is related to the amount of asymmetry, has been discussed extensively in the 

literature on asymmetry of traditional measurements [2,153,155,381]. In the literature on geometric 

morphometrics and asymmetry, as far as I know, this topic has not been discussed at all. That is 

understandable because the Procrustes superimposition partly removes effects of the size of the structure 

(as far as they are isometric) and also because analysis and correction of such allometric effects on 

asymmetry would be quite difficult (or at least tedious) in the context of geometric morphometrics.  

Conversely, studies of fluctuating asymmetry of shape have quite often examined the second type of 

allometry, which does not exist for analyses of asymmetry of scalar traits such as distances. For 

asymmetry of shape, it is relevant to ask whether shape differences between the left and right sides might be 

allometric consequences of the asymmetry of size. To address this question, it is possible to use the standard 

approach to allometry in geometric morphometrics, a multivariate regression of shape on size [382–384], 

using the signed left–right difference of the shape variables as the dependent variables and the signed 

left–right difference of centroid size as the independent variable [11,16,44,49,56,83,95,97]. Note that this 

approach is applicable only for matching symmetry because, in structures with object symmetry, the two 

sides do not have separate size measures and size differences between left and right sides are an aspect 

of shape. 

5.5. Inheritance of Fluctuating Asymmetry 

The genetic basis of fluctuating asymmetry has been extensively discussed from a range of different 

perspectives [385–389] because it is important for many of the traditional applications of asymmetry 

studies. Genetic studies of fluctuating asymmetry are complicated by the fact that the measurable 

asymmetries themselves are of non-genetic nature: what is of interest, therefore, is the genetic basis of 

developmental instability, the tendency of organisms with particular genotypes and in the given 
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environment to produce left–right asymmetry. The most direct way to implement experiments that reflect 

this situation is to use model organisms where it is easy to obtain many individuals with identical 

genotypes [52,56,77,124–126], but traditional approaches from quantitative genetics can also be used, 

such as parent–offspring regression [128], analyses of variation among inbred lines [85], or pedigree-based 

methods [85]. 

Quantitative genetic analyses for fluctuating asymmetry of shape have obtained low estimates of 

heritability sometimes statistically indistinguishable from zero [85,128]. This agrees with findings from 

traditional measurements [388]. Also, experiments in Drosophila using artificial selection for higher or 

lower fluctuating asymmetry for indices computed from wing measurements found low estimates of 

heritability that were significant in one experiment [390] but not in another [391]. Results from statistical 

models suggest that these findings are in line with theoretical expectations and that it is very challenging 

to estimate the heritability of the developmental instability that underlies the observed fluctuating 

asymmetry with the sizes of experiments that are normally used [389]. Experiments comparing 

fluctuating asymmetry among inbred strains have regularly found significant differences, and therefore 

indicate that there is a genetic basis to fluctuating asymmetry for the shape of Drosophila wings [56,85] 

and mouse skulls [135]. 

Several studies have mapped quantitative trait loci with effects on fluctuating asymmetry in mouse 

mandibles [45,107,392], mouse skulls [64], Drosophila wings [77], and human faces [98]. These studies 

found at least some loci with effects on fluctuating asymmetry, but it is likely that such analyses have 

limited statistical power with the experimental sizes that are feasible in most cases. Nevertheless, despite 

these limitations, it is conspicuous that some of these studies [45,107,392] as well as analyses using 

distance measurements [393], found that dominance and epistasis played an important role for effects of 

these loci on fluctuating asymmetry [387,388]. 

The prominent role of dominance and epistasis matches the results of simulations that used models 

of developmental processes to investigate the genetic architecture of fluctuating asymmetry [160]. In a 

simple model of a reaction–diffusion system, the trait is the distance from a morphogen source within 

which the concentration exceeds a certain threshold [394]. The model parameters (the activity of the 

morphogen source, background level, decay rate, diffusion rate, concentration threshold, and time from 

initiation to cessation of the process) are each controlled by a separate locus with two alleles. The result 

of this is that the phenotypic value is a somewhat nonlinear function of each of the parameters. Because 

the phenotypic values for heterozygotes are not exactly midway between the homozygotes, there is some 

dominance for each of the loci [160,395,396]. For different values of each parameter, controlled by one 

locus, the effects of the loci controlling the other parameters change, so that there is clear epistasis for 

the phenotypic values [160]. When a small amount of stochastic variation, independent of the genotype, 

is added to the parameters of the model, fluctuating asymmetry can be simulated by computing pairs of 

values as the left and right sides and taking their difference. Because of the nonlinear nature of the model, 

different values of the developmental parameters result in different phenotypic asymmetries. Also, 

dominance and epistasis are strong for the asymmetry values too [160]. 

The main results of these simulations do not depend on the specific system, but apply to any model 

that contains nonlinear developmental mapping, that is, nonlinear relationships between developmental 

or physiological parameters and the resulting phenotype [150,160,396]. Nonlinear relationships are 

widespread, not just in reaction–diffusion systems [160,336,394,395,397]. Given a nonlinear 
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developmental mapping function, the slope of the function can differ between different genotypes 

(Figure 16). The slope of the function at each value matters, because it indicates the sensitivity of the 

phenotype to small changes in the developmental parameter or, in other words, developmental 

instability. If the slope differs for different genotypes, the expected phenotypic response to small 

perturbations of the developmental system differs too. This means that different genotypes can have 

different developmental instability, and therefore nonlinear developmental mapping is sufficient to 

explain genetic variation for developmental instability (Figure 16). This reasoning also implies that there 

is no need for special genes that control developmental instability: any gene affecting a developmental 

parameter that maps nonlinearly to the phenotypic trait can have an effect on developmental 

instability [160]. 

 

Figure 16. Nonlinear developmental mapping and developmental instability. The graph 

shows a phenotype as a function of the amount of some developmental activity (red  

curve)—this could be a concentration of some transcription factor or enzyme. This quantity 

is affected by genetic variation (the labels “a/a”, “a/A”, and “A/A” denote the averages for 

the three genotypes of a locus with a high- and a low-activity allele) as well as environmental 

and random intrinsic variation. The tangents (blue lines) indicate that the slope of the curve 

depends on the level of developmental activity and that the three genotypes therefore will 

experience a different phenotypic change for a given small change in activity. Accordingly, 

the developmental instability differs between the three genotypes. 

The measure for developmental instability is the absolute value of the slope of the developmental 

mapping function for the genotype and environmental conditions of interest (Figure 16, blue tangent 

lines: the slopes for three genotypes). It is the absolute value of the slope that matters for developmental 

instability because the signs of the perturbations of developmental parameters are random. It matters 

whether the slope is steep or flat, not whether the curve goes up or down. For instance, both U-shaped 

and inverse U-shaped functions have regions of high developmental instability on either side of a central 

section with low developmental instability (at the bottom of the “valley” or top of the “hill” of the 

developmental mapping function).  
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Depending on the shape of the developmental mapping function, the heterozygous genotype of a 

given locus may have a slope that is not exactly intermediate between the two corresponding 

homozygotes, but closer to one of them (e.g., Figure 16) or more extreme than both (e.g., possible for 

U-shaped or sigmoid functions). This means there can be dominance as well as over- or underdominance 

for developmental instability [160]. It also means that the dominance for developmental instability is 

linked in some way to the dominance for the phenotypic value itself. If there are multiple developmental 

parameters in the model, the developmental mapping function is a surface over the space of parameters. 

Depending on the curvature of this surface, changes in the values of one parameter can cause alterations 

in the mapping function for other parameters [160]. From a genetic perspective, this means that the 

effects of genes that influence the values of one parameter can alter the phenotypic effects of genes that 

alter other parameters in the model. In other words, the effects of genes controlling different 

developmental parameters interact with each other, or there is epistasis between them [160]. And again, 

the epistasis for the trait value can bring about epistasis for developmental instability because the change 

of the developmental mapping functions may involve changes of slopes. Also, even for a single 

developmental parameter that is under the control of two or more loci, nonlinear developmental mapping 

can bring about epistasis among those loci for developmental instability. 

This reasoning has clear implications for studies of the genetic architecture of developmental 

instability [150,160]. Above all, it can account for the prominent role of dominance and epistasis for 

fluctuating asymmetry that have been found in searches for quantitative trait loci [387,388]. It also can 

explain the relationship between fluctuating asymmetry and heterozygosity and the role of  

coadapted gene complexes, which both have been prominent themes in the literature on fluctuating 

asymmetry [379,385].  

Note a further implication of the model: an environmental change that either changes the shape of the 

developing mapping functions (the curve in Figure 16) or that can change the values of developmental 

parameters for a particular genotype (horizontal shifts of the positions of genotypes in Figure 16) can 

also change the developmental instability of any given genotype or the genetic architecture of 

developmental instability in a population. This is a somewhat humbling thought with regard to 

interpreting the results of different empirical studies or the replication of experiments.  

So far, this discussion has considered models in which the phenotype is represented by a single scalar 

trait. Yet organismal shape is an inherently multidimensional feature, so that it is necessary to consider 

briefly the implications of these models for such complex phenotypes. For simple scalar traits, the slopes 

indicate the steepness of the inclines of the developmental mapping function and possibly the direction 

of steepest inclines in relation to the coordinate system of developmental parameters. With 

multidimensional phenotypes, the developmental mapping function represents the relation between the 

space of the developmental parameters and the phenotypic space (the shape space in studies using 

geometric morphometrics). Some aspects of the phenotype might covary most with some set of 

developmental parameters but less with others, so that different phenotypic aspects might be more or 

less associated with specific developmental processes and vice versa. Alternatively, there might be less 

flexibility, but a single dominating set of features accounting for most or all phenotypic variation may 

be linked with a feature encompassing all developmental variation. The focus has therefore shifted from 

developmental mapping to the patterns of covariation among traits and parameters. In the context of 

geometric morphometrics, tools such as partial least squares analysis [398] between shape and 
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developmentally relevant quantities or a multivariate regression [382] of shape on a set of hypothesized 

developmental parameters could be used for exploring the developmental mapping in empirical data. 

Also, because phenotypic variation from random perturbations in the developmental system is likely to 

arise predominantly in the directions of steepest inclines of the developmental mapping functions, these 

can possibly be identified from the shape features associated with the most fluctuating asymmetry, as 

they can be estimated from principal component analyses of fluctuating asymmetry [11,13]. In 

conclusion, it emerges that geometric morphometric analyses can help to provide local estimates of the 

directions of developing mapping functions for shape. In combination with comparative and 

experimental approaches, it is also possible that morphometric methods can be used for exploring the 

larger-scale topography of developmental mapping functions. 

6. Fluctuating Asymmetry and Developmental Integration 

Because geometric morphometrics offers the possibility to study patterns of covariation among 

landmarks, it has opened a wide range of new applications for fluctuating asymmetry in the study of 

morphological integration [179,399]. After some pioneering studies of integration in fluctuating 

asymmetry [400,401], interest in the topic grew quickly since the late 1990s, mostly in the context of 

evolutionary developmental biology, where analyses of covariation of fluctuating asymmetry, 

particularly in combination with the methods of geometric morphometrics, are now a standard tool in 

the study of morphological integration [11,16,17,42,44,49,51,55,135,168,169,176,251,402,403]. The 

rationale behind using fluctuating asymmetry in studies of morphological integration is that it can 

provide information on the developmental origins of covariation among traits [17,404]. This section will 

summarize the reasoning behind this approach and provide an overview of applications.  

6.1. Developmental Origins of Covariation between Morphological Traits 

To infer information about the development of traits from morphometric data, the main source of 

evidence is the covariation among traits. Therefore, it is useful to consider how this covariation originates 

in development. A range of theoretical models of developmental processes have been developed to 

consider this and related questions [405,406]. These models contain different scenarios how covariation 

between traits results from developmental processes.  

Riska [405] formulated a model in which a precursor tissue is divided into two parts that subsequently 

give rise to a different trait each (Figure 17a). Because of the shared development before the partitioning 

of the precursor, variation that affects those early steps (lightning bolt in Figure 17a) has a joint effect 

on both traits that can manifest itself as covariation between the traits. Division of a precursor tissue is 

not the only way of generating such covariation. Another model contains two separate developmental 

pathways that each produce one trait, and which are connected by a signaling interaction from one 

pathway to the other (Figure 17b). The signaling interaction can pass variation from “upstream” in the 

pathway from which the signal originates to the other pathway and thereby generate covariation between 

the two traits. Both these ways of generating covariation between traits involve direct interactions 

between the pathways from which the traits originate: the splitting of a single pathway into two or the 

signaling from one pathway to the other. In both models, the interaction transmits variation, including 

variation that arises within the “upstream” part of the pathway itself, directly to multiple traits. Therefore, 
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these models can be summarized as mechanisms that generate covariation between traits by direct 

interactions between developmental pathways [17,404]. Additional models for the origin of covariation 

from direct interactions between pathways are conceivable (e.g., competition between growing tissues 

for some resource [342,407]) and will have similar implications. 

 

Figure 17. Developmental origins of covariation between traits. The diagrams represent 

developmental pathways as a succession of stages (boxes), which give rise to morphological 

traits. Lightning bolts represent the effect of variation. (a) Covariation between traits from 

the partitioning of a shared precursor tissue. The partitioning step divides the precursor into 

two parts (scissors symbol) that are producing one trait each. Variation occurring before the 

partitioning step (lightning bolt) affects both traits jointly and thus produces covariation 

between them; (b) Covariation between traits resulting from signaling between pathways. 

Variation from “upstream” of the signal can be transmitted to the other pathway and thereby 

yields covariation between traits; (c) Covariation from parallel variation of separate 

developmental pathways. The same external source of variation simultaneously affects both 

pathways (lightning bolts) and thus generates covariation between the two traits. Modified 

from [404], Elsevier Academic Press, with permission. 

A different situation is the model of covariation between traits from parallel variation in separate 

developmental pathways (Figure 17c). The covariation originates from the simultaneous effect of some 

external source of variation on two separate developmental pathways [17,404]. Sources of variation may 

be environmental, such as variation in temperature or nutrition, or they may be genetic, such as the 

occurrence of different alleles for a gene that has some role in both pathways. There is no interaction 

between the pathways, which may be in distant parts of the organism. Therefore, variation from within 

one of the pathways can only affect the trait that emerges from that pathway, but cannot generate 

covariation between traits.  
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Distinguishing the two modes of covariation clearly is important if the purpose of a study is to identify 

developmental basis of morphological integration, but it also matters because the two modes of 

covariation have different evolutionary implications. For covariation by direct interaction of 

developmental pathways, the source of variation and the origin of the association between traits are 

separate from each other. The source of variation just needs to act “upstream” of the interaction in order 

to transmit its effects to multiple traits through the interaction between pathways. This also means that 

the interaction can affect different sources of variation—genetic, environmental or spontaneous 

fluctuations of the developmental processes themselves. By contrast, for parallel variation of separate 

developmental pathways, the source of variation and the association between traits are inseparable 

because the association originates from the simultaneous effects of variation on different pathways. 

Therefore, different sources of variation may produce different associations among traits. Both modes 

of covariation can produce pleiotropy, joint effects of single genes on multiple traits, but they will have 

different consequences in populations and evolving lineages [404]. Distinguishing the two modes is 

therefore important for developmental, genetic and evolutionary studies. 

In practice, how can the two modes be distinguished? Covariation by parallel variation of separate 

developmental pathways relies on a source of external genetic or environmental variation. Therefore, 

strictly controlling for environmental variation by rearing organisms under constant laboratory 

conditions and using genetically identical individuals is a possibility, but is restricted to the standard 

model organisms. Another strategy is to try to focus on variation originating from inside the 

developmental pathways themselves, because this variation can only be transmitted among traits by 

direct developmental interactions. Fortunately, fluctuating asymmetry meets the requirements of both 

these strategies: the left and right sides of individuals share the same genome and very nearly the same 

environmental conditions and, because the differences between the sides originate from random 

fluctuations in developmental processes, the variation arises from within the developmental pathways 

that build the structures under study. Therefore, covariation of fluctuating asymmetry in different traits 

must be exclusively due to direct developmental interactions between pathways that generate those 

traits [17,404]. 

The comparison of patterns of variation for fluctuating asymmetry and individual variation therefore 

is a useful tool for making inferences about the developmental basis of morphological integration. 

Whereas the covariation in fluctuating asymmetry is exclusively due to direct interactions between 

developmental pathways, the covariation for individual variation usually is expected to be a mix of 

contributions from direct interactions between developmental pathways and parallel variation of separate 

pathways. There is no direct way to quantify the relative contributions of the two modes to the total 

covariation of traits among individuals, but it is plausible that direct developmental interactions play a 

primary role for all covariation if the patterns of covariation of fluctuating asymmetry and individual 

variation are similar [17,404]. This is one of the main rationales for an increasing number of comparisons 

of the patterns of covariation between fluctuating asymmetry and individual variation [254]. 

6.2. Morphometric Analyses of Covariation of Fluctuating Asymmetry 

The comparisons between patterns of covariation for fluctuating asymmetry and individual  

variation used in the context of developmental integration are similar to those in the context of 
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developmental stability and canalization (cf. Section 5.2). Accordingly, many studies have used  

matrix correlation and the associated matrix permutation tests [11,13] or similar statistical approaches. 

Many such studies have found related patterns for fluctuating asymmetry and individual  

variation [11,16,44,49,55,56,67,72,79,82,97,106,119,139,167–169,172–174,177,358]. Such results 

support the idea that direct developmental interactions make a substantial contribution to the patterns of 

integration among individuals. Nevertheless, the fact that a handful of other studies did not find 

significant associations between the two levels [13,42,73,78] is a reminder that general conclusions are 

elusive. Also, some of the matrix correlations found in these studies, although statistically significant, 

are not very high—the patterns of variation for fluctuating asymmetry and individual variation often are 

clearly related but they are not the same. Accordingly, it appears that direct developmental interactions 

do play an important role in shaping the patterns of integration for morphological traits, but parallel 

variation of separate developmental pathways also contributes some of the covariation.  

If there are many covariance matrices to consider, for instance if there are different species or 

genotypes included in a study, the comparison among them by pairwise matrix correlations is very 

tedious. An alternative approach is to conduct an ordination analysis by principal coordinate analysis 

based on a suitable measure of distance between covariance matrices, which yields scatter plots in which 

the spatial arrangement of points represents the relations among covariance matrices. The first such 

analysis used a distance measure calculated as one minus the matrix correlation between covariance 

matrices [177], and alternative measures were proposed subsequently [408,409]. The statistical 

properties of these distance measures are not well understood, but some empirical comparisons have 

found somewhat similar but not identical patterns [73,349]. This approach has been applied to 

comparisons involving fluctuating asymmetry and individual variation [62,73,117,177]. Although no 

firm conclusions can be drawn from these few studies, they suggested intriguing patterns such as 

systematic differences between the patterns of fluctuating asymmetry and individual variation [62,117], 

as well as a possible tendency for less variable patterns of fluctuating asymmetry [177]. Overall, it seems 

promising to use this approach in conjunction with large-scale experimental or comparative studies. 

In addition to these overall comparisons of patterns of variation, geometric morphometrics offers a 

range of different analyses that focus on different aspects of morphological integration [9,254]. For 

instance, principal component analysis extracts the main patterns of variation in a structure and provides 

information about the dimensionality of variation, which are important aspects of integration [254,410]. 

For this reason, many studies have conducted principal component analyses of fluctuating asymmetry, 

which provide estimates of the patterns and dimensionality of integration due to direct interactions 

among developmental pathways [11,16,44,49,52,106,167,168].  

An important task in studies of developmental integration, of course, is the analysis of covariation of 

fluctuating asymmetry between different structures. Both the strength and the pattern of this covariation 

are of interest. To quantify the strength of integration between the shapes of different parts, the RV 

coefficient [411] can be used, which is an index of covariation between sets of variables that is a 

multivariate generalization of a squared correlation coefficient and has properties that make it suitable 

for geometric morphometrics [170]. Simulation studies [412,413] have shown that the RV coefficient 

can be upwardly biased, particularly if sample size is small and the dimensionality of the data is high 

(similar biases also occur for other measures of covariation [414], and notably apply to the squared 

correlation coefficient as well). Therefore, some caution is advisable when comparing strengths of 
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integration between different structures, particularly if the data differ in sample sizes and dimensionality. 

Notably, for comparisons of RV coefficients between fluctuating asymmetry and individual variation 

that are computed from the same datasets, this bias is not a serious problem because the sample sizes 

and dimensionalities are nearly or exactly the same and the bias therefore has the same effect on both 

estimates. The RV coefficient has been used to quantify integration of fluctuating asymmetry and 

individual variation [63,170,415]. 

The patterns of covariation between structures or between parts of the same structure can be 

investigated with partial least squares (PLS) analysis [16,44,49,398,414,416,417]. PLS analysis 

decomposes a matrix of covariances between two blocks of variables into pairs several axes so that the 

resulting new variables have maximal covariance with each other. Each PLS axis in one block is 

correlated in the other block only with the PLS axis of the same pair, so that the PLS axes can be 

inspected pair by pair. In the context of geometric morphometrics, each PLS axis is associated with a 

particular shape change. The shape changes of the first few pairs of PLS axes are the dominant patterns 

of covariation between the blocks, and only a few pairs often account for the bulk of the total covariation 

between blocks. Statistical significance of covariation can be assessed using permutation tests [44,398]. 

If covariation between two regions within a single configuration of landmarks is the subject of a PLS 

analysis, so that the two blocks of variables are landmark coordinates that have undergone the same 

Procrustes superimposition together, the permutation test needs to be adjusted by including the 

Procrustes fit in each round of the permutation test to take into account the effect of the joint 

superimposition on the covariation between parts [49,170]. PLS analyses have been widely used to 

examine patterns of integration between parts, and many studies have compared PLS analyses for 

fluctuating asymmetry and individual variation [16,44,49,63,74,80,415]. 

Modularity [418–421] is related to morphological integration: in a modular structure, the modules are 

integrated internally but relatively independent of one another, so that integration is strong within 

modules but weaker between them [170,179]. Some authors have argued that modularity facilitates 

evolutionary change [418–421], a hypothesis that has been investigated with the methods of  

geometric morphometrics [172,422–424]. Also, some authors have hypothesized that the patterns of 

genetic and developmental modularity should evolve to match the patterns of functional  

modularity [399,419,425–427]. Clearly, this “matching hypothesis” [428] provides a rationale for 

investigating the relation between modularity of fluctuating asymmetry, which indicates the 

developmental basis of modularity, and modularity among individuals or genotypes. If a hypothesis of 

modularity is available, based on functional, anatomical or developmental considerations [72,178,179,428], 

it can be tested using geometric morphometrics [170]. If the hypothesis is true, it is expected that 

subdividing the landmarks according to the modules to which they belong will result in a weak 

covariation among the resulting subsets. By contrast, if the landmarks are partitioned haphazardly into 

subsets that are not congruent with the true modules, the strong within-module integration will produce 

a strong covariation between these subsets. By comparing a multivariate measure of association, such as 

the RV coefficient, for the subdivision that corresponds to the hypothesis and a large number of 

alternative partitions with the same numbers of landmarks it is possible to test the hypothesis of 

modularity [170]. If the hypothesis holds, the association between subsets corresponding to hypothetical 

modules should be smaller than the association between random subsets of landmarks. By contrast, if 

the hypothesis is false, there is no expectation that the covariation between hypothetical modules should 
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be weaker than for random partitions of landmarks. Therefore, the test can be conducted by obtaining 

the distribution of RV coefficients for a large number of alternative partitions of the landmarks into subsets 

of the same sizes as the modules in the hypothesis [170]. This method of comparing a measure of association 

among alternative partitions can be used for fluctuating asymmetry as well as for individual variation, and a 

growing number of studies have applied it to both levels [67,72,74,75,82,97,101,106,170,172,174]. 

In summary, this brief overview demonstrates that the standard methods of geometric morphometrics 

as well as the more specialized tools such as tests for modularity can all be applied to data for fluctuating 

asymmetry [254]. Analyses of fluctuating asymmetry can therefore be used as an integral part of 

multilevel analyses of morphological integration [429] including also individual variation, interspecific 

comparative data providing information on evolutionary diversification and perhaps other levels, if they 

are available. Some first examples of this kind of study exist [72,168,172,173], and it can be expected that 

others will soon appear. 

6.3. Evolutionary Implications 

The distinction between covariation from direct developmental interactions and from parallel 

variation of separate developmental pathways is not just of interest for its own sake, but has also 

important evolutionary implications [404]. In an evolutionary context, the focus of attention is the origin 

of pleiotropy, the genetic association between traits, because it is a key determinant for evolutionary 

change by natural selection or random drift [425,430–432]. The two modes of covariation have 

consequences for the evolutionary effects of pleiotropy. It is easiest to appreciate these consequences by 

considering what happens if there is a change in the mechanisms that produce covariation and how 

frequent such changes may be [404]. 

To understand the consequences of changes in direct interactions between pathways, we need to ask 

how a changed interaction between pathways can affect the covariation between the traits they produce. 

Therefore, it is useful to reconsider the models used to introduce the idea of direct interactions  

(Figure 17a,b), but to add a change in the interactions themselves (Figure 18). If there is an evolutionary 

change of how a precursor tissue is partitioned (orange lightning bolt in Figure 18a), the way in which 

variation from “upstream” in the pathway (yellow lightning bolt in Figure 18a) is transmitted to the traits 

may be changed. Such a change has an effect on all the variation passed through the pathway and 

therefore may alter the patterns of pleiotropic effects for many genes that are active in the pathway. 

Similarly, a change in the signaling from one pathway to the other (orange lightning bolt in Figure 18b) 

can affect how variation is transmitted for all the variation originating in the upstream portion of the left 

pathway (yellow lightning bolt in Figure 18b). Because the source of variation is separate from the origin 

of covariation, the interaction between pathways, a single change in this interaction can simultaneously 

change the patterns of pleiotropy of many genes that are active in the upstream portion of the  

pathway [404]. It is clear that the consequences of such a change for the genetic architecture of the traits 

can be far-reaching. 
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Figure 18. Effects of changes in direct interactions between developmental pathways. 

The two scenarios consider the consequences of changes in the mechanisms responsible for 

interaction (Figure 17a, b). (a) A change in the process of partitioning a precursor tissue into 

parts that give rise to two traits. The way of partitioning is changed (orange lightning bolt), 

which has effects on how variation from other steps in the pathway (yellow lightning bolt) 

affects the two traits; (b) A change in the signaling from one pathway to the other. The 

change in the signaling interaction (orange lightning bolt) can have an effect on how 

variation from the left pathway (yellow lightning bolt) is passed to the right pathway and to 

trait 2. Modified from [404], Copyright Elsevier Academic Press, with permission. 

Another question is how probable such a change is in a population or in an evolving lineage over a 

particular time interval. Because developmental processes such as the division of precursor tissues and 

inductive signaling between pathways are often of fundamental importance for setting up the 

fundamental structure of an organ, it is likely that changes in such processes have consequences on the 

morphology of the organ that are relevant to the fitness of the entire organism. It is therefore likely that 

most changes of this kind are selected against, but that rare advantageous changes may occur and spread 

through lineages. If so, the developmental interaction is constant over much of evolutionary time, but 

occasionally may change at a relatively rapid rate. The resulting changes in the patterns of genetic 

integration will share the same dynamics of extended periods of constancy interspersed with occasional 

relatively rapid changes. To some extent, therefore, changes in developmental interactions between 

developmental pathways may contribute to a “punctuational” type of dynamics for the patterns of genetic 

integration [404]. 

For covariation of traits from parallel variation of separate developmental pathways, it is helpful to 

use an example where a single gene encodes a protein that is active in both pathways, but where separate 

regulatory regions drive expression in the different developmental contexts of the two pathways  

(Figure 19). If the mutation is in the coding region of the gene and alters the developmental activity of 

the gene product, it affects both pathways (Figure 19a). If such a mutation is segregating in a population, 

it produces joint variation of traits 1 and 2 and therefore contributes to their covariation. Accordingly, 

for this kind of mutation, there is pleiotropy. By contrast, if the mutation is located in one of the two 

regulatory regions (Figure 19b,c), it only affects the pathway in which the regulatory region drives the 
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expression of the gene, but has no effect on the other pathway. Accordingly, such a mutation produces 

no covariation between the two traits and has no pleiotropic effect.  

 

Figure 19. Effects of mutations on covariation of traits by parallel variation of separate 

pathways. The simplified model considers a gene with a coding region (brown) and two 

regulatory regions (green and blue ellipses) that drive gene expression in particular steps of 

the developmental pathways (boxes in the same colors as the corresponding regulatory 

regions). (a) Mutation in the coding region (orange lightning bolt). If this mutation is 

segregating in a population, it has a joint effect on both pathways (if the sequence difference 

affects the processes in both pathways, yellow lightning bolts). As a result, there is 

covariation between the two traits; (b) Mutation in the regulatory region driving gene 

expression in the developmental pathway leading to trait 1. If the mutation is segregating in 

a population, it causes variation for trait 1 (yellow lightning bolt), but not for trait 2, and 

therefore there is no covariation between the two traits; (c) Mutation in the regulatory region 

driving gene expression in the pathway leading to trait 2. This is simply the reverse of the 

situation in (b), and there is no covariation between the two traits. Modified from [404], 

Elsevier Academic Press, with permission. 

Changes in the covariation of traits from parallel variation in separate developmental pathways are 

likely to be quite abundant because mutations, on an evolutionary time scale, are frequent events. The 

magnitude of the changes is expected to be variable, with many small changes and few larger ones. Also, 

changes in allele frequencies of variants with different effects on different pathways produce shifts in 

the strength of genetic covariation between traits in the population. Altogether, therefore, it is likely that 

these changes provide a basis for frequent and fairly gradual modification in the amount and pattern of 

covariation between traits and therefore can contribute flexibly to adaptive evolution of traits [404]. 

This theoretical argument is largely speculative and clearly requires testing with empirical data. Yet, 

it offers some intriguing explanations for emerging patterns in empirical studies. If covariation by direct 

interaction of developmental pathways is evolutionarily conservative or follows punctuational dynamics 
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with long periods of constancy and occasional abrupt change, it offers a possible explanation for the 

suggestive findings of some studies that the patterns of fluctuating asymmetry may be more constant 

among genotypes and populations than those of individual variation [73,177]. More systematic 

comparisons of the patterns of integration of fluctuating asymmetry and individual variation will be 

necessary to reach firm conclusions on this question.  

7. Perspectives 

This paper has provided an overview of the concepts and methods for studying fluctuating asymmetry 

with geometric morphometrics. Some of these ideas are just extensions of analyses that have traditionally 

been used in the study of asymmetry, but some other aspects are different, and geometric morphometrics 

offers some completely new possibilities.  

Some of the differences are simple facts, such as the prevalence of directional asymmetry  

(Section 3.1). In studies of asymmetry of distance measurements, directional asymmetry is found 

occasionally, but geometric morphometric studies have found it in nearly every dataset that was 

examined. Even though I was aware of this, during the work on this paper, I have been astounded by the 

sheer number of studies that have found directional asymmetry of shape. This is not just a matter of 

statistical power, as many of the same studies (if they used structures with matching symmetry) report 

no directional asymmetry for centroid size. There seems to be a genuine difference between size and 

shape here, one that only the methods of geometric morphometrics could reveal. This raises some new 

questions about the developmental basis of directional asymmetry of shape, its possible functional 

implications, and its evolution. 

An important feature of geometric morphometric studies, as a consequence of the multivariate nature 

of shape, is that fluctuating asymmetry of shape is not just a scalar quantity, as it is for size, but has 

patterns of variation that are of interest by themselves. Geometric morphometrics offers a range of tools 

for analyzing these patterns, and such analyses of covariation in fluctuating asymmetry are now an 

established part of studies of morphological integration [179,254,403]. In turn, the patterns of 

covariation can also provide information about the nature and developmental origins of asymmetry. A 

most promising approach combines analyses of fluctuating asymmetry with others such as individual 

and evolutionary variation into a multilevel approach [429]. This approach is feasible for many studies, 

as long as multiple specimens from a number of species are measured for left and right sides, and has 

yielded useful insights in the few examples where it has been used to date [168,172,173]. A greater 

challenge, in terms of both the requirements of data collection and the problems of the analyses, is the 

question how the patterns of integration evolve. 

Another area with much scope for further work, are structures with complex symmetries, where a few 

studies have provided first glimpses at the wide range of future possibilities [14,24]. In particular, studies 

of symmetry and asymmetry of flowers appear to be a promising area for geometric morphometrics, 

with few examples of such studies at present [25,27]. In general, in plants, studies of symmetry can be 

seen as a part of or complement to the investigation of within-plant variation [262], and some elegant 

analyses have used geometric morphometrics to shed light on questions of plant development [191,260].  

In conclusion, I would like to express my surprise and delight about the diversity and richness of 

work in this area. The length of this review and the number of references are a clear sign of this (I 
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expected this paper to be at most half the length it has now). I am also excited about the remarkable 

number of publications from the last two to three years, which suggests rapid growth in this area and 

makes me look forward to its future.  
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