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The constancy of postmoult,/premoult ratios of measures of linear size during ontogeny in insects 
and other arthropods is widely known as Dyar's rule. We tested this rule in nine species of the 
waterstrider genera Gerris and Aqzlarius (Heteroptera: Gerridae), using two size variables: head 
width and a multiviiriate n~easure derived from the pattern of multivariate allometry common to 
the species considered. Allometric patterns were similar in two independent datasets of 
laboratory-reared and field-caught specimens. Although our data strictly followed Dyar's rule in 
just a few instances, all growth ratios varied within a limited range only. Growth ratios for head 
width differed more between moults than those for multivariate size. The relationship between 
growth ratios for the two size measures conformed to the predictions based on allometry. We 
discuss hypotheses of the possible adaptive significance of growth ratios, such as their relation to 
mobility and systematic differences between hemimetabolous and holometabolous insects, and 
emphasize the importance of allometry. Since Dyar's rule is consistent with available evidence of 
physiological mechanisms underlying growth and moulting control of insects and crustaceans, it 
can be used as a general frame of reference to test alternative growth models. 
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Introduction 

Arthropods are covered by a cuticle which mainly functions as an exoskeleton (Hadley, 1986). 
In most arthropod species at least some parts of this exoskeleton are strongly sclerotized and 
unable to expand (Teissier, 1960; Nijhout, 1981; Sehnal, 1985). This rigidity prevents continuous 
growth, and such structures therefore grow in a stepwise manner. The stepwise growlh results 
from moulting, i.e. the replacement of the old cuticle by a new one which was formed during the 
intermoult cycle prior to ecdysis (Sehnal, 1985). Growth of sclerotized parts can easily be analysed 
by assessing their size in successive instars. Many authors studied growth of immature insects (e.g. 
Dyar, 1890; Gaines & Campbell, 1935; reviews by Nijhout, 1981; Daly, 1985; Sehnal, 1985). 
Similar studies of other arthropods include Enders (1976) on spiders: Teissier (1960) and Freeman 
(1990) on crustaceans, and Albert (1982) on centipedes. 

Several mathematical ~nodels have been used to describe linear measurements of sclerotized 
parts in successive instars. Two frequently used models are the linear progression y =a +bx, and 
the geometric progression j 1=ahx, termed Dyar's rule (Dyar, 1890), or equivalently its log- 
transformed version l o g > =  loga +(logb)~,where y is a measure of size, x is the instar number, and 
a and h are constants. This relation has also been termed Brooks-Dyar rule (Hutchinson & 
Tongring, 1984). Despite their simplicity, these models have sometimes been confounded (e.g. 
Richards, 1949: Savopoulou-Soultani & Tzanakakis, 1990). The linear progression model is 
appropriate if there is a straight-line relation between untransformed size measures and instar 
number, i.e. if absolute growth increments are the same in all moults. Reports of Iinear increase 
include Richards (1949) and Ghent (1956). In contrast, Dyar's rule assumes a geometric 
progression of size measures, where succeeding growth ratios (i.e. postmoult size/premoult size; 
also termed Dyar's coefficient) or percentage increments, but not the absolute increments, are 
constant (Dyar, 1890; Hutchinson & Tongring, 1984; Sehnal, 1985). Therefore, a plot of log- 
transformed size measurements against instar number reveals a straight-line relation. Larval 
growth according to Dyar's Rule was reported among others by Hemmingsen (1965), Brown & 
Davies (1972), Peters (1972) and Loudon (1988). However, there can bc considerable differences 
between various body parts (Brown & Davies, 1972). 

Originally, such relations were used to determine the number of instars (e.g. Dyar, 1890; Gaines 
& Campbell, 1935). In most of these studies, the width of the head capsule was taken as a measure 
of larval size (see Cole, 1980, and references therein). However, head capsule width can increase 
slightly, but significantly, within stadia (Bliss & Beard, 1954) or even exhibit apparently 
continuous growth (Hemmingsen, 1965). Therefore, some authors included a variety of 
measurements of rigidly sclerotized structures which lack significant growth within stadia (e.g. 
Hemmingsen, 1965; Brown & Davies, 1972). 

More recently, Enders (1976), Cole (1980) and Hutchinson & Tongring (1984) emphasized the 
possible adaptive importance of Dyar's rule. However, in such a context, it seems important to use 
a general measure of size representative of all the body parts involved in a functional hypothesis, 
e.g. feeding parts and appendages used in locomotion. Because animal size and shape are 
intrinsically multivariate concepts, we prefer to use a synthetic variable expressing multivariate 
size, instead of an arbitrarily chosen single character (see Bookstein et al., 1985; Bookstein, 1989). 
A rigorous mathematical concept of multivariate size and shape within the framework of 
geometric similarity was presented by Mosimann (1970) and exemplified by the study of 
Mosimann & James (1 979). 

Several authors already mentioned the relation between Dyar's rule and allometry (Teissier, 
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1960; Matsuda, 1964; Hemmingsen, 1965; Brown & Davies, 1972). However, it should be noted 
that Dyar's rule is not simply a special case of allometry (contra Matsuda, 1964), but  covers a n  
entirely different aspect of growth. Allometry pertains to  the relations between different body 
parts, whereas Dyar's rule describes the stepwise growth of any single part in successivemoults (or, 
alternatively, of a multivariate measure of general size). In other words, allometry indicates the 
ontogenetic trajectory, i.e. the path in morphospace along which an  organism moves during 
ontogeny, whereas Dyar's rule is concerned with the discrete steps of growth along that path. 
However, there is a relation between allometry and Dyar's rule: if two characters xl and x2 follow 
the allometric equation X I  = b ~ - 2 ~ ,then either both characters grow according to  Dyar's rule (with 
the corresponding postmoult/premoult ratios rl and r2 satisfying rl =rzk) o r  neither of them does. 

In  this study we evaluate Dyar's rule in all five larval instars of nine species of the waterstrider 
genera Gerris and Aquarius, and discuss it in relation to allometric growth and the physiology of 
moulting. Patterns of multivariate allometry were compared by Klingenberg & Zimmermann 
(In press) using the same data. Here, we use Mosimann's (1970) definition of size variables to 
extend Dyar's rule in the context of multivariate allometry. 

Materials and methods 

Materials and  rvzeasurernents 

The present study includes all 5 larval instars (denoted Ll to L5, respectively) of 9 species of waterstriders: 
Gerris argentatus, G. costae, G. gibhifer, G. laczcstris, G. lateralis, G. odontogaster, G. thoracicus, Aquarius 
najas and A. paludum. 

We performed parallel analyses on 2 separate datasets of larvae collected either in the field or reared in the 
laboratory (for details, see Zimmermann, 1987). Sample sizes for each instar and species were 20 in both 
datasets, except for L1 of all species from the field (n= lo), L2 of G. lateralis from the field (n= 12), and L5 of 
A.paludurn reared in the laboratory (n = 19). Thus, the total number of larvae was 899 for laboratory rearings 
and 802 for -the field samples. All specimens were preserved in 70% ethanol. 

Eleven measurements were taken on each specimen by means of a dissecting microscope fitted with an 
eyepiece micrometer for the laboratory-reared specimens, and with a Wild MMS 235digital length measuring 
equipment for the larvae from the field. Characters measured are head width (HEAD), lengths of the 4 
antenna1 segments (ANTSEG1 to ANTSEG4, respectively), and lengths of femora, tibiae and tarsi of the 
middle (MIDFEM, MIDTIB and MIDTARS) and hind legs (HINDFEM, HINDTIB and HINDTARS). 
Details of measurement and univariate statistics are given by Zimmermann (1987). 

Statistical anal~rsis 

Ontogenetic allometry pertains to the character covariation within species over the 5 larval instars 
considered. We apply Jolicoeur's (1963) concept of multivariate allometry, using the first principal 
component (PC) of the covariance matrix of log-transformed variables to characterize patterns of allometric 
variation. The first PC is the normalized linear combination of the log-transformed variables which 
maximizes the proportion of total variance accounted for. and can therefore be seen as a line of best fit to the 
data points (Pimentel, 1979). The first PC score of an individual indicates its position along that line. 

Since both our datasets are composed of 9 closely related species, we use a model specifically designed for 
such a multigroup situation instead of analysing each species separately. The common principal component 
(CPC) model assumes that the eigenvectors (PCs) of the covariance matrices in all species are identical 
(Airoldi & Flury, 1988; Flury, 1988), i.e. the species share a common allometric pattern. In a previous study, 
we applied this model to the present dataset for 8 variables (Klingenberg & Zimmermann. In press). First 
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ontogenetic CPCs were closely similar in their coefficients to first PCs estimated for each group separately, 
and also accounted for a similar proportion of total variance, thus demonstrating the good fit of the CPC 
model (Klingenberg & Zimmermann, In press). We therefore consider the CPC model as an extension of 
Jolicoeur's (1963) approach, characterizing a common pattern of multivariate ontogenetic allometry in all 9 
species studied. Two parallel analyses were performed for the specimens reared in the laboratory and those 
collected in the field. The bootstrap technique (Efron & Tibshirani, 1986), with 250 bootstrap iterations for 
each dataset, was used to determine standard errors of ontogenetic CPC coefficients (for details see 
Klingenberg & Zimmermann, In press). 

We use the mathematical concept of size variables presented by Mosimann (1970). Let x =(x,, . . . ,x,,) be a 
vector of p linear measurements. A positive real-valued function G(x) is a standard size variable if 
G(ax)=aG(x), where a is any positive real number. A log-transformed size variable is termed a log-size 
variable. An important group of log-size variables can be written as linear combinations of log-transformed 
measurements, i.e. logG(x)=Cb,{logxi). Since G is a standard size variable, it can be shown that the 
coefficients bimust satisfy Zbi= 1 (Mosimann &James, 1979). Note that any single character also conforms to 
this definition [i.e. logG(x) =logxi], by setting b,= 1 and hi=O for any j # i  in the above linear combination. 

We defined a multivariate measure of size by rescaling the first ontogenetic CPC so that the coefficients sum 
up to unity. This was achicved by dividing each coefficient by the sum of all coefficients. The rescaled 
component therefore fulfils the criteria for a standard size variable sensu Mosimann (1970), and it 
simultaneously reflects the main allometric pattern of ontogenetic change in the characters included in the 
analysis. For comparison, we used log-transformed head width as another log-size variable. 

The geometric-mean growth ratio of both standard size variables at each moult was detennined as the 
antilogarithm of the difference between mean values of the respective log-size variable for 2 successive instars. 
It therefore corresponds to the ratio of the geometric means of the size variable in successive instars. 

Confidence intervals of geometric-mean growth ratios were established using the bootstrap technique 
(Efron & Tibshirani, 1986). In each bootstrap iteration, bootstrap samples were drawn at random, with 
replacement, from the original samples. A bootstrap estimate of the geometric-mean growth ratio was then 
determined as the antilogarithm of the difference in mean scores of the respective size variable in the bootstrap 
samples of successive instars. One thousand bootstrap iterations were performed for each moult and for both 
standard size variables. The percentile method (Efron & Tibshirani, 1986) was used to determine central 95% 
confidence intervals, i.e. the confidence limits are the 2.5% and 97.5% quantiles of the empirical distribution 
of bootstrap estimates. 

Tests for equality of size ratios using null hypotheses with log-uniform (Simberloff & Boecklen, 1981) or 
log-normal (Boecklen & NeSmith, 1985) distributions of size measures cannot be applied here, since the sizes 
of successive instars cannot be assumed to be independent of each other (see also Tonkyn & Cole, 1986). 
Therefore, we interpret confidence intervals of geometric-mean growth ratios which include a common value 
or interval in all successive moults as supporting the hypothesis of constant growth ratios. 

Computations were done on DEC/VAX systems at the computing centres of the Institut fiir Meereskunde 
an der Universitat Kiel and of Kiel University. CPCs were estimated using the FORTRAN subroutine 
FGALG of Flury (1988). FGALG was run in REAL*16 precision. while all other computations were 
performed in double precision (REAL*8). 

Results 

Multivariate allometvy 

The first ontogenetic CPCs accounted for most of the total variance in all nine species. In the 
dataset of  laboratory cultures, the amount  of total variance explained by the first C P C  ranged 
from 97.55% ( A .  najas) t o  99.22% (G. gibbger), and from 97.04% (A.  najas) to 99.51% 
(G. thoracicus) in the field data.  Therefore, almost the entire ontogenetic variation is represented 
by first ontogenetic CPCs. 
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Estimates of first ontvgenetlc common principal 
component coeficients and their bootstrupped 

standard errors 

Laboratory Field 
-- ---- -

Character Coeff. S.E. Coeff. S.E. 

HEAD 
ANTSEG 1 
ANTSEG2 
ANTSEG3 
ANTSEG4 
MIDFEM 
MIDTIB 
MIDTARS 
HINDFEM 
HINDTIB 
HINDTARS 

The estimates of CPC coefficients are fairly stable, as can be seen from their small standard 
errors (Table I). Most of the first CPC coefficients are similar in the separate analyses for 
laboratory and field samples, and clearly differ from the coefficient value for isometry. which is 
0-302. Head width shows negative allometric growth. In the antennae, there is a clear gradient 
from the first segment with clearly positive allometry, to the fourth segment with strongly negative 
allometry. A similar gradient with decreasing allometric coefficients from proximal to distal 
segments also pertains to the middle and hind legs. Tibiae and femora have higher coefficients in 
the hind legs than in the middle legs, whereas the reverse is true for the tarsi. The multivariate 
allometric coefficients of head width are equal in both datasets, while coefficients of antenna1 
segments are somewhat higher in the laboratory samples than in the field, and the reverse occurs in 
leg segments. Overall, however, allometric patterns in both datasets are very similar, as indicated 
by the very narrow angle between the first ontogenetic CPCs, which amounts to only 2.24". 

Dyar's rule 

There is significant variation in growth ratios among species and the four larval moults 
considered. both for head width (Fig. 1) and for the multivariate size measure (Fig. 2). Values of 
the growth ratio for head width, where the confidence intervals of all four moults intersect, are 
found only in the field samples ofA.pa1udum. Therefore, Dyar's rule does not apply in a strict sense 
to the growth of the head width in most of the material considered here. However, for multivariate 
size there are more instances where all four confidence intervals overlap: in the field samples of 
G. argentatus, G. thoracicus, A. najas and A.  paludum, as well as in both field and laboratory 
samples of G. gibhifer and G. lateralis. 

Despite considerable differences between the two datasets, growth ratios of head width tend to 
decrease during larval development, most clearly for the samples from the field. In the laboratory 
material, a remarkably similar pattern of growth ratios (LlLL2 > L2-L3 < L3-L4 > L4-L5) is seen 
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Laboratory Field 
L4-15 2 -t- G. argentatus 
L3-L4 - 1-
LZ-L3 4 - I-
L1 -L2 tT T-rr-, ,t--

1.15 1.25 1.35 

L4-L5 - + G. costae 
L3-L4j -+ 
L2-L3. C- ---,-
~ 1 - ~ 2  -, - 7 r r -1 
T 

L~-L~I]+ G. lateralis 
L3-L4 : 4-
~ 2 - ~ 3 3  -t-

L4-L5 1 -t- L4-L5 + G odontogaster
L3-L4 L3-L4j +-
L2-L3 L2-L3 -4-
L1-L2 4-- L 1 - ~ 2 1  , , -1 -

1.15 1 25 1.35 1.15 1.25 1.35 

-.+ - L4-L5 -
L3-L4 ---I--- -+-L4-L5 3 L3-L41 

-- A. najas 

FIG.1. Geometric-mean growth ratios of head width in nine species of Gerris and Aquarius for samples from laboratory 
cultures and from the field. Bars indicate bootstrapped central 95% confidence intervals of the estimates (for details see 
text). 
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Laboratory Field 

L4-L5 _+_ G. argentatus 
L3-L4 
L2-L3 

---t 

1.3 1.4 1.5 1.6 

L4-L5 -t 
L3-L4 -+ G. costae 
L2-L3 

1.3 1.4 1.5 1.6 

+
L4-L5 

L4-L5j, , ,;.;.<-;;
 , 

G. lateralis 

, , , , 

L3-L4j 
L2-L3 +- L2-L3 

L1 -L2 L3-L4 

1.3 1.4 1.5 1.6 1.3 1.4 1.5 1.6 

L4-L5 ----C L4-L5] Godonfogaster
L3-L4 t- L3-L4 --+-

L2-L3 i t- ~ 2 - ~ 3 ~  -t--
, - + --

Ll-L2 , T r  r LI-L~I,, +, , , , , , ,1 v- , 

L4-15 -t- L4-L5 --t 
13-L4 t - 13-L4 - 1 -
L2-L3 4- L2-L3 -t A. paludum 
L1-L2 , , , r - T T ~  --t -L2 - ,-r -+r i -rvv,-, 

1.3 1.4 1.5 1.6 1.3 1.4 1.5 1.6 

FIG.2. Geometric-mean growth ratios of the multivariate size variable, i.e. the rescaled scores of the first ontogenetic 
common principal component. Bars indicate bootstrapped central 9S0hconfidence intervals ofthe estimates (for details see 
text). 
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In (growth ratio of multivariate size) 

In (growth ratio of multivariate size) 

FIG. 3.  Relations between geometric-mean growth ratios of the multivar~ate size and those of head width. (a) 
Laboratory cultures. (b) Field samples. 
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in G. argentatus, G. costae, G. gibbifer and A.  rzajas. The same pattern was not found in the field 
data. Except for the laboratory samples of A. najas and A.  paludum, the growth ratios of 
multivariate size seem to vary less within species than those of head width. Depending on the 
species considered, growth ratios can increase as well as decrease from younger to older instars. 

Interestingly. confidence intervals are fairly narrow even at the Ll-L2 transition in the field 
data, where small samples (n = 10 in L1) are used to estimate growth ratios. For multivariate size, 
confidence intervals are even considerably wider in later moults, related to increased individual 
size variation in older instars. 

Growth ratios of head width are consistently smaller than corresponding growth ratios of the 
multivariate size measure (Figs 1 & 2). The theoretical relation between the two kinds of growth 
ratios is ~ H E A ~  k logrCPC,=rCpCk,or equivalently logrHEAU= where ~HEAI)and rCp~ are the growth 
ratios of head width and the rescaled CPC, respectively, and k is the allometric coefficient of head 
width with respect to the n~ultivariate size measure. Because the coefficient of head width on the 
first ontogenetic CI'C is also the allometric coefficient with respect to the CPC score, and since we 
rescaled the CPC by dividing scores by the sum of all coefficients (Table I), the theoretical value of 
k equals the first CPC coefficient of head width multiplied by the sum of all first ontogenetic CPC 
coefficients. Despite the substantial amount of variation (Fig. 3), the regressions of logvHEAD on 
logrcpc were significant for both datasets. The intercept did not differ significantly from zero, and 
there were no significant differences between slopes observed and expected from multivariate 
allometry. In a regression model without an intercept, regression estimates ofk values of 0-679 for 
laboratory rearings and 0.656 for field samples did not differ significantly from the expected values 
of 0.678 and 0.649, respectively (r-test, Sokal & Rohlf, 1981). 

Discussion 

Dyar's rule, the constancy of the ratios of postmoult/premoult size measures in successive larval 
ecdyses, was not strictly fulfilled for most species in our datasets, although growth ratios varied 
only within a limited range. Similar results were reported in earlier studies on varlous insects 
(Hemmingsen, 1965;Brown & Davies, 1972; Sehnal, 1985; Loudon, 1988; Savopoulou-Soultani & 
Tzanakakis, 1990), and also in other arthropods such as spiders (Enders, 1976), centipedes 
(Albert, 1982). and crustaceans (Freeman, 1990). 

Our study is based on a cross-sectional design, i.e. different specimens were measured for each 
instar, assuming that samples are representative of the respective instars. Therefore, we cannot 
assess indiv~dual growth ratios, as in a longitudial design using the same individuals in subsequent 
instars (Kowalski & Guire, 1974). However, this does not affect our estimates of geometric-mean 
growth ratios, since the geometric mean of ratios in two paired samples equals the ratio of 
geometric means of the samples [in log-transformed notation: logr =Clog(xz/x~)/n=X(logx2-
logxl)/n=Clogxz/n- Clogxl/n, where r is the geometric-mean growth ratlo, xi and x2 are the 
values of a size variable in two successive instars, and n is sample size]. When considering the 
confidence intervals of the estimates of geometric-mean growth ratios, however, it is important to 
keep in mind that our estimates of variability were obtained by randomly drawing specimens from 
two independent samples of successive instars, thereby ignoring any correlation of individual size 
between instars, and thus including the possibility that the largest individuals in the previous instar 
might be the smallest after moulting, or vice versa. Since this seeins rather unlikely, we presume 
that a longitudinal study would reveal even narrower confidence intervals. Regulatory phenomcna 
resulting in targeted growth (e.g. Atchley, 1984), as reported for cockroaches by Tanaka (1981) 
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and for crustaceans by Hartnoll & Dalley (198 l), would also tend to reduce the range of individual 
variability in growth ratios. 

Variation in growth ratios between succeeding ecdyses was generally less important for our 
multivariate size variable than for head width. There seems to be some unique variation in the 
growth of the head, since growth ratios of head width have a general tendency to decrease during 
development (Fig. 1). A slight decrease in growth ratios of head width has often been observed, e.g. 
in the milkweed bug Oncopeltus fasciatus (Bliss & Beard, 1954) and in later instars of the 
mealworm Tenebrio molitor (Loudon, 1988). However, such adecrease in growth ratios is not seen 
for the multivariate size measure (Fig. 2). The decelerating growth of the head apparently is 
outweighed by the faster development of proximal appendage segments, most of which have 
considerably higher allometric coefficients than head width (Table I). 

Enders (1976) stated that growth ratios of head and body dimelisions in spiders and insects are 
inversely related to locomotory activity, slnce the energetic costs of transport of nutrients stored 
for growth increase with growth ratios. In a comparison of published data of 105 insect species, 
Cole (1980) found generally higher growth ratios of head measurements in holometabolous 
(median: 1.52) than in hemimetabolous (median: 1.27) insects. Cole interpreted this difference as 
evidence against Enders' hypothesis, and argued that it might reflect a general divergence in 
habitats and resource use. The hypotheses of Cole and Enders are not mutually exclusive. 
however, since larvae of hemimetabolous insects are often more mobile than holometabolous 
larvae; specific tests of both hypotheses will be needed. Furthermore, it should be noted that most 
previous studies considered only measurements of the head capsule. Our estimates of growth 
ratios of head width are close to typical values reported for hemimetabolous insects by Cole 
(19801, whereas those for the multivariate size measure are higher due to allometry. Therefore, 
another important difference between hemimetabolous and holometabolous insects might be that 
the former allocate more resources to the growth of larval locomotory structures than the latter 
(i.e. the two groups differ in their allometric patterns), although they might be fairly similar in 
'overall growth'. Unfortunately, most studies of allometric growth in insects focused on 
hemimetabolous insects (e.g. Matsuda, 1960, 1961a, h, 1962; Matsuda & Rohlf, 1961; Blackith, 
Davies & Moy, 1963; Davies & Brown, 1972; Cuzin-Roudy & Laval, 19751, and we are not aware 
of any similar investigations in holometabolous insects, except Hemmingsen (1965) who only 
considered dimensions of the head capsule and spiracle diameter. 

Hutchinson & Tongring (1984) argued that Dyar's rule might result from a maximization of 
growth efficiency, assuming that the size of the first instar, the number of instars. and the 
arithmetic mean of growth ratios are predeterm~ned. However, the approximate constancy of 
growth ratios can as well be seen as resulting from the physiological base of moulting (e.g. Nijhout, 
1981; Sehnal, 1985). In a series of experiments on the bug Rhodniusprolixz~s,Bennet-Clark (1971) 
showed that the old cuticle plays an important role In determining the size of the successive instar, 
and he argued that the cuticle works as a template for the formation of the epicuticle of the 
following instar (see Freeman, 1990, for a similar study of a crustacean). If successive moults are 
controlled by the same physiological mechanism, constancy of growth ratios will result. Thcrefore, 
we prefer to view Dyar's rule as a base of comparison against which specific adaptive hypotheses 
can be tested, rather than to search for an adaptive explanation for the rule itself, as Hutchinson & 
Tongring (1984) attempted to do. 

We are grateful to L. Frauchiger for assistance in the laboratory work and to Dr B. Flury for providing a 
version of the FG-algorithm and for his advice on CPC analysis. This study was partially supported by the 
German Academic Exchange Service grant 313/024/007/0 to CPK. 
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