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Abstract: The authors present an automated system for feature recognition in digital images. Morphometric
landmarks are points that can be defined in all specimens and located precisely. They are widely used in
shape analysis and a typical shape analysis study involves several hundred digital images. Presently, the
extraction of landmarks is usually done manually and the process of identifying the landmarks is an important
and labour-intensive part of any such analysis. This process is time-consuming, and quite often the research
questions are dependent on the duration of obtaining these data. The authors show that a single training
image with its landmark co-ordinates is enough to independently estimate the landmarks of any individual
within a particular data set. The reliability and accuracy of the method can be further enhanced by using
multiple training images. The precision, repeatability and robustness of the algorithm have been evaluated. It
is shown in this study that the method is sufficiently accurate to replace the manual identification of
landmarks. The generic nature and intrinsic capability of the feature recognition process enables this method
to be easily incorporated into other recognition tasks.
1 Background
Morphological landmarks are points that can be located
precisely and establish an unambiguous one-to-one
correspondence among all the specimens and are widely
used in shape analysis [1]. Points like the tip of the nose or
the outer corner of the left eye are possible landmark points
of the human face. Analyses of shape investigate the
arrangement of landmark points relative to each other. A
substantial body of statistical methods is available for the
analysis of configurations of landmark points [2].

This framework of shape analysis by landmarks is
increasingly used in many biological and medical
applications and is widely applied in many other fields. The
anatomical landmarks can be easily collected in two
dimensions from digital images and this approach is quite
useful as the landmarks can be collected from non-model
organisms or even fossils. The X and Y co-ordinates of
these landmarks are usually obtained by manually digitising
the location of these co-ordinates appropriately based on
their anatomical context. The configuration of landmarks
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have helped identify the possible source of re-infesting
specimens and encounter the epidemiologically challenging
vectors of Chagas disease [3]. The potential of using
geometrical morphometric techniques as an invaluable tool
for recognising taxonomic data is being explored [4]. Other
scientific applications include investigating the study of size
and shape to examine the effects of experimental
treatments, genotype or other factors directly in the
anatomical aspect. The use of landmarks has been adapted
to specific biological contexts such as genetics [5–7],
geographic differentiation [8] and the study of
morphological integration [9, 10].

Developing an automated system for locating landmarks in
digital images of Drosophila wings is largely significant, as it
is an excellent model for the study of genetics of development
and evolution of morphological form [11, 12]. They contain a
wealth of interesting biological information and its simple,
flat, two-dimensional structures enables convenient
handling. Specialised algorithms and plug-ins have been
used to semi-automate the process and to enhance the
speed of the manual digitisation. There have been previous
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attempts to automate the process of landmark location on the
Drosophila wing. The method presented in [12] is a semi-
automated process where the operator initiates the process
by marking two landmark positions and the system fits a
series of spline curves to the margin and the veins of the
wing, and defines the landmarks as the intersections of the
splines. The drawback of such a system is that the
landmarks are not always at the exact location of the
intersection of veins and the splines may not exactly match
the veins (because of the ‘stiffness’ of the spline
interpolation) and the system has problems identifying
wings of species with highly melanised spots at the
intersections.

Another such system to locate the landmarks on digital
images of bee wings is being developed at the Paris
National Museum of Natural History [13]. It applies the
techniques of mathematical morphology and skeletonisation
to obtain the landmarks. However, using these techniques
are not guaranteed to be robust. The method also requires
human intervention in terms of loading the data and
identifying the initial set of points to start the process and
the pre-processing step includes certain parameters that
have to be set by the operator.

2 Introduction
In this paper, we focus on the automatic extraction of
morphometric landmarks in digital images of Drosophila
(see Fig. 1). Morphometric landmarks are points that can
be defined in all specimens and located precisely. They are
widely used in shape analysis and a typical shape analysis
study involves several hundred digital images. Presently, the
extraction of landmarks is usually done manually and the
process of identifying the landmarks is an important and
labour-intensive part of any such analysis. This process is
time-consuming, and quite often the research questions are
dependent on the duration of obtaining these data. To
address these problems, many researchers have focused on
using specialised algorithms and semi-automated methods
to enhance the speed and reliability of the digitisation
8
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process [12]. Although these methods increase the
efficiency of human effort, the requirement for an observer
has not been eliminated as the methods require the initial
set of landmark co-ordinates to be identified manually.
Also, the systematic variations between different individuals
raises an issue relating to reliability and repeatability of this
process of digitisation. Therefore complete automation of
the process has been identified as an important goal.

Automating the process of landmark extraction has
numerous advantages over manual digitisation, as it will not
only diminish the labour needed for shape analysis, but it
also will eliminate the source of error (mistakes made
during digitising and subtle differences between observers).
Furthermore, automatic extraction of features from images
can potentially change the way in which landmarks are
chosen for morphometric studies. Whereas the traditional
approach requires landmarks to be chosen a priori, based
on outside knowledge of the study system, the approach
using automated image analysis raises the possibility to
identify and extract features from the total information
contained in the images that are maximally informative in
the context of a particular research project.

3 Methods
The data set consists of 856 grey-scale images of the
Drosophila wings (as shown in Fig. 1a). Data acquisition is
carried out by mounting the fly wings in rows on a
microscopic slide and flattening with a cover slip. The
digital images are obtained using an appropriate digital
camera mounted on the microscope and attached to a
computer. A calibration image is generally obtained along
with each of the data set to standardise the difference
in magnifications between different data sets. Two
independent sets of images with five images in each set and
their landmark co-ordinates are used as training (reference)
images.

The analysis system is constructed from four key stages:
a feature-based detection of the fly wing structure,
Figure 1 Drosophila wing and morphometric landmarks

a Image of a Drosophila wing
b Schematic representation showing the 15 morphometric landmarks
IET Comput. Vis., 2010, Vol. 4, Iss. 4, pp. 247–260
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recording the compact invariant shape descriptors using the
pairwise geometric histogram (PGH) representation, global
estimation of the pose using the probabilistic Hough
transform (PHT) and finally a correlation-based refinement
of individual features.

The proposed method extracts the ridges (linear features
such as wing veins) using the noise characteristics of the
image and by approximating the grey-level profile using a
difference of Gaussian (DoG) filter. The ridges obtained are
approximated by line segments and the geometric
relationships between them are encoded in PGHs, an
approximation to the probabilistic density function for the
geometric co-occurrences in the data. Shape correspondence
is determined by comparing and matching the pairwise
histograms of the scene and model data. A PHT, (robust
likelihood) is used to determine the hypothesised landmark
location. Sub-pixel estimation of the landmark location is
performed by template matching, that is, correlating a small
region around the Hough estimated landmark location.

3.1 Image preprocessing and feature
extraction

The feature extraction stage involves extracting essential
information from the digital images and retaining only
those features that we are interested in. Before extracting
features in the image, it is important to preprocess the
image with an appropriate enhancement technique. In this
study, a DoG filter is employed for a variety of reasons. It
is important to choose a filter with a shape profile similar
to the features that we are looking for so that it can provide
a maximal response when centred over the features. This is
consistent with the concept of a matched filter. In this
case, the shape of the DoG filter along with its radial
weighting allows us to reduce the significance of the image
data away from the centre and define a zero response for
uniform background regions. Also, the width of the DoG
filter can be optimised to detect features at a particular
scale. It is essential for the filter to accommodate changes
Comput. Vis., 2010, Vol. 4, Iss. 4, pp. 247–260
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in the scale of the features up to a certain factor and this
can be achieved by taking the difference of two Gaussian
filters with convolution widths that differ by that factor.
The radially symmetrical shape of the DoG filter allows the
enhancement of the features at all orientations equally. In
addition, applying a linear operator such as a DoG filter
does not introduce any arbitrary spatial dependency on the
noise process in the output image. Moreover, the DoG
filter applies noise filtering, eliminating unwanted high-
frequency image structure, such as bristles (see Fig. 2).

The feature enhancement stage and the thresholding of a
response from the features in the feature detection process
can be related to a conventional hypothesis test, as used for
significance testing [14]. This framework potentially allows
the construction of a feature detector for any form of local
image structure and therefore provides very little constraint
on the definition of what we would like to detect. Using
the concept of error propagation, the uniformity of the
noise in the image and its effect in the output image can be
estimated. The first-order analysis (error propagation)
provides an understanding of the effects of noise, and
provides a necessary but not sufficient condition for
algorithm stability. For any function, f ( y) ¼ x, a small
change dx in x can cause a change dy in the function f ( y).
This change in the function, dy, can be estimated by taking
the partial derivatives of the function, f ( y), with respect to
x and considering the small change dx as dy = (dy/dx)dx.
Thereby, any change in the function, that depends on a
variable x, can be calculated from the amount of change on
the variable x itself.

For the specific case of convolution of an image, the output
image can be represented as below

f(x,y) =
∑

m

∑
n

GmnI(x+m,y+n) (1)

Any change s in the input image I will cause a change df
in the output image f. Therefore the change in the output
Figure 2 Result of the preprocessing stage and the feature extraction on Drosophila wing image

a Preprocessed image (DoG filter)
b Feature extraction on original image
c Feature extraction on noisy image (≃10 times added noise)
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image can be calculated from estimates of the variance in the
input image.

For uniform independent random noise s, this can be
represented as

df 2
(xy) =

∑
m

∑
n

G2
mns

2 (2)

In the above equation, the effects of the parameters of the
convolution kernel can be summarised by a constant, K

∑
m

∑
n

G2
mn = K (3)

Therefore the changes in the output image can be re-written
as below

df 2
(xy) = Ks2 (4)

It is evident that any change in the output image is directly
proportional to the noise in the input image and spatially
consistent. Such behaviour will result in a ‘robust’ response
to image data, in that responses detected above fixed
thresholds will behave equivalently everywhere in the
image. The original Canny algorithm is ideal for detection
of step edges [15], but has to be modified to meet the
needs of detecting ridge features in this study [16].
The enhanced features and a corresponding orientation
estimates are provided to a similar framework, which
extracts extended structures of linked features using
hysteresis thresholding (lower threshold approximated to
1.5 times s noise and upper threshold set to 3.0 times s

noise) and non-maximal suppression. The shape of wing
profiles combined with the need for some kind of radial
weighting in the detection process can be interpreted as a
likelihood estimate for the scale of local image structure
(Appendix).

3.2 Geometric features

The shape of arbitrary image regions can be represented using
feature vectors that are obtained by grouping features;
deriving the geometrical relationship between these vectors
can best represent the shape information in comparison to
the individual features on their own. The geometric
relationship between a set of feature vectors is unique with
respect to their shape representation and provides a more
reliable shape representation scheme compared to the
primitive features such as edges. The geometric features
characterised by the geometric properties (angle, ratio of
the length of lines) between a set of feature vectors (string
of edgels or lines) have the characteristics that are invariant
to in-plane rotation, translation and line extension.

Geometric features such as the relative angle between the
directional vectors of two line segments is a useful feature
for shape representation [17]. The perpendicular distances
0
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from the endpoints of a line segment to the extension of
another line segment, denoted by dmin and dmax, is another
geometrical feature that is invariant to rotation and
translation. However, this feature is based on the absolute
distances and therefore scale sensitive. This problem could
be overcome by normalising the perpendicular distances
with the length of the line segments. The combination of
the relative angle and the perpendicular distances provides
an useful set of geometric features that can be used in
high-level shape representation (Fig. 3). The geometric
features are robust to fragmentation (as shown in Fig. 3b
and 4b) and this characteristic is crucial to achieve robust
shape representation.

3.3 Pairwise geometric histograms

In order to support efficient shape matching, it is important that
the edge features are represented in a compact and invariant
manner. Geometric relationships between the underlying
edge features, such as angle and perpendicular distance,
provide an efficient and robust shape description. Encoding
the set of geometric features by means of a histogram can be
understood as recording the statistical variability in the shape
in the form of probability density distributions.

The PGH is an approximation to the probabilistic density
function

Hi(u, d ) = P(ui − uj , dij |ei) (5)

for the geometric co-occurrences of an edgel ej given ei as a
function of relative angle ui − uj and perpendicular
separation dij . This is a well-established method of shape
representation [18, 19] based on robust recording of the
distribution of pairwise geometric relationships between
local shape features that can support recognition of
identical geometric features in the test images using
standard pattern recognition techniques as described in
Section 3.5 [20–22]. There is considerable robustness to
the loss of data due to fragmentation noise and occlusion
[17, 18]. The method is also known to be complete, in
that the original structure of the object can be
reconstructed from the set of histograms describing a
shape. This representation is invariant for portions of the

Figure 3 Geometric features (angle and perpendicular
distance)

a Geometric features
b Geometric features (fragmented)
The features are robust to fragmentation indicating efficient
shape representation
IET Comput. Vis., 2010, Vol. 4, Iss. 4, pp. 247–260
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same linear feature so that it can be constructed by
considering a linearisation of the edge map, thereby making
the method suitable for the detection of extended lines via
clustering.

The importance of a pair of line segments defining the
representative shape can be encoded by entering the product
of their lengths at the value of the entry. Appropriate
weighting of the entries in the PGH ensures sudden
changes are not introduced in the representation by gradual
changes in input data; therefore matching performance
degrades smoothly. Blurring the entries in the histograms is
used as a way of encoding measurement uncertainty
regarding the true position and orientation of the line
segments. This assists in robustness of the algorithm by
accommodating the subtle differences in location of the
features due to the variability in the line segmentation
process. The scale of binning and blurring specifies the
allowable extent of differences when comparing similar
shapes [17]. Since any arbitrary shape can be approximated
by a set of straight lines, the PGH is applicable to even
linearised smooth curves [17]. The invariance properties of
PGH and its insensitive characteristics to noise makes it an
efficient shape representation technique.

3.4 Histogram construction

During training normalised PGHs are generated for model
features and during analysis PGHs are recorded for scene
features. This can be related to recording the statistical
variability in the shape in the form of probability density
distributions. Measurement errors introduced by the
approximation of edge strings by straight line segments has to
be accounted for during the construction of the geometric
histograms. This can be achieved by convolving the histograms
with an approximate error function and it would provide a
closer representation of the shape data it encompasses [17, 23].

The linearisation of edge pixels results in characterisation
of a string of edge pixels into linear segments and the
Comput. Vis., 2010, Vol. 4, Iss. 4, pp. 247–260
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geometric relationships between each pair of these line
segments can be encoded in the PGH. PGH is
characterised as a frequency distribution scheme that
records the geometric relationship (angle and perpendicular
distances) between a pair of features (such as two line
segments). This technique is a reliable and efficient
descriptor for classifying shape/image features. Each of the
line segments in the model image is taken in turn as the
reference line and the perpendicular distance to all other
features and the angle of orientation to all other features
with respect to the reference line is recorded. The
frequency of the geometric features is recorded as a two-
dimensional histogram with an angle axis (0 2 2p) and
distance axis (range of perpendicular distances) to record
the distribution of the geometric features within a shape.
This method is considered to be an efficient shape
representation scheme and it is translationally and
rotationally invariant as the angle and the perpendicular
distance between a pair of lines would be the same
irrespective of their orientation and position. The
approximation of the edge data is allowed up to a certain
specified accuracy by means of blurring. The blurring of
entry along each axis allows encoding the uncertainty
regarding the true position and orientation of each line
segment. The scale of binning and extent of blurring
defines the extent of allowable differences when matching
similar shapes (see Fig. 4).

The values in the histogram indicates the presence of
features in the image at a particular geometric relationship.
The importance of the features can be emphasised by
taking the total entry made in the histogram to be equal to
the product of the lengths of the reference line and the
scene line in consideration. Also, since the length of the
reference line is fixed, this can be considered to be a direct
analogue to Poisson sampling. This enables the use of
likelihood-based similarity measures to compare the
histogram entries on the basis of a square root dot product
(see Section 3.5) [17]. The success of the PGH lies in the
matching strategy adopted to compare the measure of
Figure 4 Pairwise geometric histogram – robustness to fragmentation

a PGH entry
b PGH entry (fragmented features)
The fragmented entries are identical to the non-fragmented features
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& The Institution of Engineering and Technology 2010



25

&

www.ietdl.org
similarity between the scene and model features. The
measure of histogram similarity between the scene and the
model features can be achieved by comparing their
probability distributions.

3.5 Histogram matching

The histogram matching enables robust classification of
shape features by finding similarity between the scene and
the known model features. During training, PGH are
constructed for model features and during analysis, PGH
are constructed for scene features. Shape representation
comprises many geometric histograms, each representing a
single model feature and shape recognition is done by
identifying the correspondences between the model and
scene features (as shown in Fig. 5). The degree to which a
scene feature matches a particular model feature can be
determined by comparing their probability distribution
(histograms similarity). This can be interpreted as the
statistical likelihood measure.

The Bhattacharya similarity metric [17] can be used to
compare the distributions (PGH) for the model and the
scene data. By this, it is possible to establish the shape
correspondence between them in a way which directly
identifies binary relationships, thereby avoiding the
combinatorial problems generally encountered with
interpretation trees. The similarity metric provides a
quantitative estimation of the likeness between the model
feature (reference image) and the scene feature (test image).
The Bhattacharrya measure Bij computes the degree of
match between them and is expressed in the form of a dot
product correlation of the histograms of lines Hi and Hj .

Bij =
∑2p
u

∑dmax

d

������������������
Hi(u, d )Hj(u, d )

√
(6)

The Bhattacharya metric for the histogram matching is
statistically valid and can be related, via the x2 variable, to a
maximum likelihood similarity metric and can be derived as
an approximation to Fisher’s exact test as a method for
comparing two distributions. The similarity metric must

Figure 5 Schematic representation of histogram matching
strategy
2
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account for the errors (slight variations in the PGHs of
identical features due to noise and blurring in the entries to
account for subtle variations) and degrade slowly. The
hypothesised matches can then be used as input to pose an
estimation algorithm such as the generalised Hough
transforms. Scale independent recognition can be achieved
by representing an object at a range of scales [24].
However, this property of the PGH representation was not
applied in this study.

3.6 Probabilistic Hough transform

The PHT can be used to determine the presence and location
of relevant shapes of the model in the scene image by finding
spatially consistent groups of features. A reference frame for
each of the stored model shapes is defined with reference
to an arbitrary position and all the features are measured in
relation to this frame. The relative position of the classified
scene lines can be estimated using the relative position
of the model feature in the reference frame. However,
this method is subjective to variations such as line
fragmentation. This could be overcome by improved
constraints imposed by a pair of scene lines (tuple Hough
transform). The hypothesised location of the model is
established based on the conditional probability that any
pair of scene lines will be measured at a given position.

A PHT (robust maximum likelihood) is used to make an
estimate of the global position and orientation of each wing
in the test data. The hypothesised pose estimation is
modelled by a standard error propagation model to account
for the variability of the line segmentation process and the
likely occurrences of measurement errors. Entries in the 2D
location histogram are made according to the localisation
covariance, propagated from the errors on the constraint
lines. This takes proper account of errors, resulting in
improved robustness and more accurate determination of
model position, orientation and scale in comparison to the
more conventional form of this algorithm. The entries in
the Hough arrays are constructed from pair of lines (n, m).
The equivalent probabilistic form for the Hough transform
H(x, y) used to find the position of a model in a scene is
given by the expression

H (x, y) =
∑N

n

∑N

m

log( p(x, y|n)p(x, y|m))

=
∑N

n

log( p(x, y|n))
∑N

m

log( p(x, y|m)) (7)

so that the Hough entry can be considered as the square of
the robust log likelihood L(x, y) for the localisation of the
object

H (x, y) = L(x, y)2 =
∑N

n

log( p(x, y|n))

( )2

(8)
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Each input feature in the PHT is a pair of scene line labels
that hypothesises the position, orientation and scale of a
model in the scene. The entry is made only when the pair
of lines are in reasonable agreement about the position,
orientation and scale of the model. However, this
hypothesised location is prone to error due to its
dependency on the reliability of the extracted line
segments. The Gaussian error model is applied to the
position at the end of the line segment and by applying
standard error propagation, the appropriate entry into
the PHT (Hough space) can be determined. Furthermore,
the constraints imposed by pairs of scene lines and the
associated Gaussian error model results in the pose
estimation that is equivalent to computing a robust least-
squares fit between the model and the scene data.

During array construction Hnm = log( p(x, y|n)p(x, y|m))
is estimated from a 2D Gaussian distribution centred at the
position of the model hypothesised by the m, nth pair of
scene line labels with variance propagated from the
individual line location errors. This tuple-based
construction is more reliable in cases of line fragmentation
and it helps remove background noise from the Hough
array and has some computational advantages. The
variability of the line segmentation process and the uniform
error on the scale estimates are independent and are
adjusted to give a quantitative estimate of the hypothesised
location of a pre-defined reference point from pair of scene
lines. Training from example data involves recording the
perpendicular distance, ‘d ’, from each model line to the
reference point. During pose estimation, extending each
pair of scene lines at the appropriate perpendicular distance
will intersect at the hypothesised reference point (see
Fig. 6). Error at the point of intersection can again be
estimated by standard error propagation. The PHT is
expected to perform with improved robustness and
provides more accurate determination of the model
position, orientation and scale in comparison with the
generalised Hough transform as it takes into consideration
of the errors.
Comput. Vis., 2010, Vol. 4, Iss. 4, pp. 247–260
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3.7 Determination of orientation
and scale

The PHT is used to locate models using the positions,
orientations and scales hypothesised by the scene line labels.
However, the orientations and scales of the models are not
determined explicitly. This can be determined separately
using 1-parameter Hough transforms using data consistent
with hypothesised locations. For each model position
determined, a 1-parameter orientation Hough transform
and 1-parameter scale Hough transform can be constructed
from entries selected on the basis of consistency between the
scene lines and model position. The orientation is
determined by taking into account of the difference in
orientation between the scene line and model line to which
it matched [20, 24]. Comparing the perpendicular distance
from the scene line to the model position to this same
distance in the model itself would yield the scale. Peaks in
these Hough transforms would give the orientation and
scale of the model at that position in the scene.

3.8 Template matching

The Hough scheme computes an estimate of landmark
position based on the global shape of the features. To
obtain sub-pixel accurate landmark location for use in the
morphometric studies to determine shape variations, the
estimated landmark position has to be refined. A template-
based correlation matching is applied to achieve this. Local
regions surrounding the landmark position of the template
image and the Hough predicted landmark location on the
scene image (rotated to same orientation as the template
image) are correlated across a grid of spatial locations to
obtain the landmark position based on the local image
evidence. The parameter for the correlation window size is
represented as d. The regions are preprocessed with a DoG
filter before the correlation matching is performed to ensure
that high-frequency signals that are not part of the image
structures are removed. Template matching is performed on
the DoG image of the scene D(I ) and model (example
Figure 6 Probabilistic Hough transform located landmark

a Flywing image with model overlaid
b Peak in the Hough transform
The bright spot in b indicates the corresponding Hough transform peak for landmark 15 on the flywing
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mark-up) D(M ) data, over a small region d around the
Hough estimate for the feature in the scene data (see
Fig. 7). The use of the DoG images also eliminates any
image illumination offset and the matching is performed as
a dot-product correlation in order to eliminate the effects
of illumination scaling

Lhx hy
=
∑R

x

∑R
y D(M(x, y))D(I (x + hx, y + hy))��������������������������������∑R

x

∑R
y D(I (x + hx, y + hy))

2
√ (9)

where R is the region size.

This is directly equivalent to performing a least-squares
comparison of the image regions with one free grey-level
scale parameter. In this study, the denominator is presumed
to be constant to save time on the computationally
expensive calculations. To save processing time during
alignment, the scene data are rotated to match the model
data using the Hough estimate, which is assumed to be
sufficiently accurate for final location of the landmark. The
best possible match is identified and that location is
transformed back onto the scene image. In addition, the
least-squares values that provide the best matching score for
the given template and scene region are output. These
values enable to check the best matching templates (which
can be selected for the final estimation of landmark
position) to compare the consistency in their accuracy and
to combine those landmark positions for improved
localisation. This step not only supports quality control
during the data analysis, but also allows one to check on
the adequacy of the number of reference images and to
eliminate any residual problems in alignment estimation,
such as poor rotation estimates. The use of local template
to detect salient feature in a small region characterises the
similarity between the features that we are looking for.

The template matching stage enhances the precision and
sub-pixel localisation of the landmark position obtained by
the Hough transform pose estimation algorithm. However,

Figure 7 Template matching illustration – small region
around the known landmark on the training image and
the Hough predicted landmark on the test image is
correlated to refine the location of the landmark
4
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it has to be noted that the sub-pixel localisation depends
on several factors such as the orientation of the feature, the
scale of the feature and the degree of blurring. The time
taken for the template matching is directly proportional
with the correlation window size and the search region.
However, as it is performed over a confined space around
the Hough predicted landmark location, it drastically
reduces the computational time, in comparison to using it
as a generalised first-stage approach.

4 Evaluation of the accuracy of
the automated system
A data set with 856 images (1280 × 1022 pixels) of the
wings of Drosophila melanogaster is used to evaluate the
accuracy, reliability and robustness of the automated system.
The automated landmark identification system is
implemented on this data set and the 15 landmarks (both x
and y co-ordinates) are extracted for each of the images. As
discussed in [16], multiple reference images are used to
extract the landmark co-ordinates. To sensibly combine the
estimated landmark locations by multiple training images
into a unique hypothesised landmark location, we use the
least-square matching scores to generate ranking of the best
matching training images during the landmark extraction
process.

To test the repeatability and robustness of the automated
system, the landmarks are automatically extracted on the
above data set but with two independent sets of five
reference images in each. The coherent statistical accuracy
in the estimation of the landmarks by two independent sets
of reference images and an improved performance in their
combination confirms the robustness of the algorithm.
Furthermore, the landmarks obtained from both sets are
combined to check the hypothesis that increasing the
number of reference images would improve the
performance of the automated system. This is expected to
provide us with highly accurate estimates of the landmark
position, due to the fact that in this scenario the best three
reference images are obtained from both sets of reference
images. The landmarks obtained by the best three ranking
reference images are compared with one another to ensure
that the landmarks obtained by each of the best three
ranking reference images are consistent.

The above step ensures the exclusion of any outliers at this
stage. This is achieved by calculating the distance between
the landmarks obtained by the best three matching
reference images. If the variation in their estimated
landmark positions is below a certain threshold, that is, 10
pixels (which can be determined from histograms of
repeated localisation), then the mean of the three values are
computed to estimate the final landmark position.
Alternatively, the mean of the landmark values obtained by
the best two ranking reference images is used to estimate
the final landmark position. This stage ensures that outliers
IET Comput. Vis., 2010, Vol. 4, Iss. 4, pp. 247–260
doi: 10.1049/iet-cvi.2009.0014
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if any exist do not deteriorate the precision of the landmarks
obtained by the automated system. It helps to improve the
reliability of the results obtained and ensures an
improvement in the accuracy of the final landmark
estimation. The accuracy of the landmark location
estimated by the automated system can be evaluated by
comparing them to those of manually digitised landmark
co-ordinates that are available (previously obtained for
other morphometric studies) for this data set. The method
is also shown to be stable to noise, well beyond the level
normally present in this data set [25].

5 Results
The accuracy of the automated system can be determined by
comparing the differences (in pixels) between the landmarks
located by the automated system and the manual digitisation
(see Fig. 8). It can be seen from Table 1, that the landmarks
obtained by the automated system are located within few
pixels accuracy in comparison to those manually digitised
landmark locations. The results indicate that 90.64% of the
landmarks in the data set (consisting of 896 images of size
1280 × 1022 pixels) are located within two pixels accuracy
and 98.36% of the landmarks are located within an
accuracy of five pixels from the manually digitised landmarks.

The analysis is carried out independently for each of the
landmark co-ordinates as the feature extraction process on
each of the landmark is independent of one another. The
standard deviation for each of the landmark co-ordinates
have been estimated and the results indicate that the
landmarks can be located with high reliability. Figs. 9a– f
show the results of the automated performance for the X
and Y as a function of outlier removal. It is clear that about
1% outliers need to be removed to make the results consistent.

The effect of having a larger window size (d) during the
correlation matching has been examined by comparing the
results obtained using the window size of d ¼ 15 pixels and
d ¼ 30 pixels. Figs. 10a and b indicate that there has not

Figure 8 Procrustes fit – comparison of the width of
distribution between manual (dark grey) and automated
(light grey) results
Comput. Vis., 2010, Vol. 4, Iss. 4, pp. 247–260
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been significant variation in their results. However, having
a larger correlation window significantly impacts the speed
of the algorithm, which is important when processing large
numbers of images.

Figs. 11a and b show the comparison in performance
obtained by increasing the number of reference images.
This improves the accuracy of certain features (landmarks 6
and 12), (see Figs. 11a and b). This could be attributed to
the fact that some of the features for instance landmark 12
(see Fig. 1b) has high biological variability. It was also
noted that the presence of thick bristles in the surrounding
region affects the accuracy of the landmark location. By
providing additional training images the chance for a more
appropriate matching reference image increases, thereby
enabling an improvement in its accuracy. However, there is
no evidence of significant improvement on most other
landmarks, as on the other hand, these landmarks are
simplistic features and an increase in the number of
reference images does not provide additional information
which contributes to a substantial improvement in its
accuracy.

Finally, an overall comparison is performed between the
landmark locations obtained using the automated method

Table 1 Accuracy of landmarks estimated by the automated
system

Pixel range No. of data points Cumulative accuracy, %

0.5 18 815 69.99627976

1 2316 78.61235119

2 3232 90.63616071

3 1382 95.77752976

4 491 97.60416667

5 204 98.36309524

10 275 99.38616071

15 45 99.55357143

20 16 99.61309524

25 32 99.73214286

50 67 99.98139881

100 3 99.99255952

more 2 100

26 880

The results indicate that about 70% of the landmarks are
located within sub-pixel accuracy in comparison to the
landmarks located by manual digitisation. About 98.4% of
the landmarks are located within five pixels from the
landmarks estimated manually.
255
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and manual digitisation in the context of a morphometric
analysis using Procrustes alignment (Procrustes analysis is
carried out by superimposing configurations of landmarks
in two or more specimens to achieve an overall best fit. The
aligned co-ordinates constitute a new set of variables
encoding the shape information [1, 2].). Figs. 12a and b
show the comparison of the width of the distribution of the
Procrustes co-ordinates for the manual and the automated

results. The Procrustes fit for the manual and automated
results is shown in Fig. 8 (they are offset slightly for easy
comparison). It is clear that after 2% outlier removal, that
is, about 17 images, the width of the distribution is
comparable to an expert manual performance. Although
manual digitisation does not produce these outliers, we
consider such losses to be negligible in the context of such
experiments.

Figure 9 Standard deviation of the automated results from the manual results

a The plot shows the SD of X co-ordinates obtained using the best three out of five reference images from Reference set 1.
b The plot shows the SD of Y co-ordinates obtained using the best three out of five reference images from Reference set 1.
c The plot shows the SD of X co-ordinates obtained using the best three out of five reference images from Reference set 2.
d The plot shows the SD of Y co-ordinates obtained using the best three out of five reference images from Reference set 2.
e The plot shows the SD of X co-ordinates obtained using the best three out of ten reference images from both Reference set 1 and 2.
f The plot shows the SD of Y co-ordinates obtained using the best three out of ten reference images from both Reference set 1 and 2.
The X and Y co-ordinates for the 15 landmarks are plotted as a function of outlier removal to show the stability of the results.
6 IET Comput. Vis., 2010, Vol. 4, Iss. 4, pp. 247–260
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Figure 11 Results obtained by the best three matching templates from a set of five and ten reference images are compared
after removing outliers (1%)

a Standard deviation of X co-ordinates
b Standard deviation of Y co-ordinates

Figure 10 Comparison of the effect of template matching window size parameters (d ¼ 15 & d ¼ 30 pixels) on X and Y
co-ordinates standard deviation. Average of best three sets of landmarks out of ten is used after removing outliers (1%)

a Standard deviation of X co-ordinates
b Standard deviation of Y co-ordinates

Figure 12 Comparison of the standard deviation of the Procrustes (X and Y) co-ordinates obtained by manual and automated
methods

a Standard deviation of Procrustes X co-ordinates
b Standard deviation of Procrustes Y co-ordinates
T Comput. Vis., 2010, Vol. 4, Iss. 4, pp. 247–260 257
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6 Discussion
The automated method presented in this study is based on a
stable feature extraction process, which is inherently robust
and has a high degree of noise stability. This study provides
confirmation that the PGH representation is a reliable
shape descriptor. Such behaviour is a fundamental
requirement for any object recognition algorithm. In
combination with the Hough transform, the combined
system has the ability to capture pose variation and offers
reliability even in cases of line fragmentation and occlusion.
These properties are present in this approach by design;
specifically, attention to the treatment of shape data as
measurement, combined with the requirements for image
invariants and the use of appropriate statistical matching
processes. In particular, the desired invariance to in-plane
rotation, translation, illumination and aperture selection
is intended to provide a compact representation, which
generalises well to unseen data. The ability to deal with scale
change has also been identified [20, 24], in a manner
consistent with the Scale Invariant Feature Transform (SIFT)
approach. The PGH representation and the arguments
regarding its completeness [17] and techniques for statistical
matching [17] predate this more popular work by a decade.

The simple procedure of regional template matching is
shown to be extremely robust in sub-pixel localisation of the
features. The performance of the template matching
depends on how accurately the template of the model
matches the scene features. The templates for each of the
landmark regions could have been created synthetically using
the accurate description of the scene information pertaining
to that particular landmark. However, it is essential to take
into account of the biological variability and the presence of
bristles across the outline of the wing. It also involves the
complexity in constructing the possible template models
across the different landmarks. Therefore a deliberate choice
of simplified process was to correlate the regions
surrounding the respective landmarks in the model and the
scene image. This process allows comparing regions of
real images and avoids the issues surrounding real feature
models.

The current system is capable of providing a set of 30
landmark co-ordinates (15 landmarks) on an image of size,
1280 × 1022 pixels in about 3 min on a SUN Sparc Ultra
5 workstation. The time taken for an expert to digitise
using specialised algorithms is �40 s, although maintaining
this speed across a large data set would be unrealistic.

7 Conclusions
In this study, we have presented an automated system for feature
recognition in digital images. The performance of the system
and its robustness have been evaluated by comparing it to the
manual results obtained by an expert. The results achieved
allows us to draw the conclusion that the automated method
presented in this paper is a reliable system for extracting
8
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features such as morphometric landmarks on digital images.
The landmarks obtained by the automated system are input
into a morphometric software package using Procrustes co-
ordinates for further scientific analysis. It is shown in this
study that the method is sufficiently accurate to replace the
manual digitisation process (8).

A fully automated system to extract morphometric
landmarks is useful for the analysis of shape [1, 2], biological
variability [8] and several other contexts [4]. The generic
nature of object recognition and feature location incorporated
in this automated system enables easy modification to locate
features in a variety of other feature recognition tasks. The
method is intrinsically robust to changes in shape and based
firmly on the statistical interpretation of data analysis. The
automated landmark identification system will benefit major
research groups in the field of morphometrics and will easily
be transferable to other relevant areas. The automation of
shape analysis has major potential advantages regarding
standardisation, as the landmarks can be located without any
manual intervention and will make large-scale studies easily
feasible [5, 8, 11]. The need for only a few reference images
makes the system even more appealing. The algorithm will be
made available as an open source package from www.tina-
vision.net and www.flywings.org.uk.
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10 Appendix
It is a general notion that features in an image I can be
enhanced, ready for threshold detection, using a
convolution with a kernel shaped similar to the feature t

f (x, y) =
∑

ij

t(i, j)I (x + i, y + j)

For an image with independent random Gaussian noise of
width s we can write the likelihood for a template t′

describing an image region as

L =
∑

ij

(a(x, y)t ′(i, j) − I (x + i, y + j))2

s2 + var(t ′)

where var(t ′) is the variance (i.e. the accuracy) of the
assumed template, and a is a scale factor defining the
strength of the linear contribution of t′ to the image.
Assuming that var(t ′) is independent of a, the likelihood
estimate of a is

a(x, y) =
∑

ij

t ′(i, j)I (x + i, y + j)

s2 + var(t ′)

This justifies using the template

t = t ′(i, j)

s2 + var(t ′)

Exact knowledge of the template within a defined region, and
ignorance elsewhere leads directly to t = t ′. However, it is
also sensible to assume that our knowledge of the expected
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template reduces away from the centre (i.e. a radial
weighting) such as

t = t ′(r, u)

s2 + w(r)

For example w(r) may be set to give an overall Gaussian
weighting

t = t ′G(r) with w(r) = 1/G(r) − s2
0
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Notice, that from a matching perspective this does
not give a unique interpretation for any particular t′,
as there are an infinite number of possible weightings
we can use in the construction of a specific t. In addition,
for a given level of image ‘signal’ the best response will be
given to an image looking like t and not t′. In some
applications more specificity to a specific shape may be
achieved by locating features on the likelihood L, rather
than using a.
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