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SUMMARY Identifying the modular components of a con-
figuration of landmarks is an important task of morphometric
analyses in evolutionary developmental biology. Modules are
integrated internally by many interactions among their
component parts, but are linked to one another only by few
or weak interactions. Accordingly, traits within modules are
tightly correlated with each other, but relatively independent
of traits in other modules. Hypotheses concerning the
boundaries of modules in a landmark configuration can
therefore be tested by comparing the strength of covariation
among alternative partitions of the configuration into subsets
of landmarks. If a subdivision coincides with the true

boundaries between modules, the correlations among
subsets should be minimal. This article introduces Escou-
fier’s RV coefficient and the multi-set RV coefficient as
measures of the correlation between two or more subsets of
landmarks. These measures can be compared between
alternative partitions of the configuration into subsets.
Because developmental interactions are tissue bound, it is
sensible to require that modules should be spatially contig-
uous. I propose a criterion for spatial contiguity for sets of
landmarks using an adjacency graph. The new methods are
demonstrated with data on shape of the wing in Drosophila
melanogaster and the mandible of the house mouse.

INTRODUCTION

Organisms are integrated to function as a whole, but this

integration is not uniform throughout (e.g., Olson and Miller

1958). Individuals and their major morphological units are

composed of multiple parts that are more or less distinct of

each other due to function, anatomical structure, and embry-

ological origins. This coordination into subunits has long

been known as morphological integration (Olson and Miller

1958; Cheverud 1996) and has become the focus of renewed

interest in evolutionary developmental biology under the

heading of modularity (Raff 1996; Wagner 1996; von Dassow

and Munro 1999; Bolker 2000; Winther 2001; Schlosser and

Wagner 2004; Callebaut and Rasskin-Gutman 2005; Klingen-

berg 2008). Integration and modularity concern the degree of

covariation between parts of a structure, which can be studied

by means of morphometric methods. An important task for

morphometric research is to determine whether a structure is

a single integrated unit or consists of several distinct modules,

and if so, to identify the modules. Integration and modularity

have been investigated in many different study systems such

as insect wings (Birdsall et al. 2000; Klingenberg and Zaklan

2000; Zimmerman et al. 2000; Klingenberg et al. 2001), rodent

mandibles (Atchley and Hall 1991; Atchley et al. 1992;

Cheverud et al. 1997; Ehrich et al. 2003; Klingenberg et al.

2003, 2004; Monteiro et al. 2005; Márquez 2008; Zelditch

et al. 2008), and the skulls of various mammals, including

humans (Cheverud 1982, 1995; Leamy et al. 1999; Lieberman

et al. 2002; Bookstein et al. 2003; Ackermann 2005; Bastir and

Rosas 2005; Goswami 2006a; Mitteroecker and Bookstein

2008).

A primary task for morphometric studies of modularity is

to delimit modules and to evaluate hypotheses about their

boundaries. A module is a unit whose parts are integrated

tightly because there are many and often strong interactions

among them, but different modules are relatively independent

of each other because the interactions between modules are

fewer or weaker (e.g., Klingenberg 2008). Therefore, infer-

ences about the boundaries of modules from the patterns of

covariation among traits can be made by partitioning the

traits into subsets in different ways and comparing the degree

of covariation between subsets (Fig. 1; Klingenberg 2008). If

the division of the traits into subsets coincides with the

boundary between modules, the covariation between the sub-

sets results from the few or weak interactions between traits

belonging to different modules (arrows across the bold line in

Fig. 1A). Accordingly, the degree of correlation between the

subsets should be relatively low. If the division into subsets is

not congruent with the boundary between modules, however,

it cuts across the modules and some of the covariation be-

tween the subsets is from the numerous and strong interac-

tions within modules (many arrows cross the bold line in

Fig. 1B). Accordingly, the covariation between the traits in

the two subsets is expected to be stronger. Such comparisons
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of different ways to divide a set of traits into subsets provide a

method to test hypotheses about the boundaries of modules.

A division into subsets that correspond to the true modules

should result in a smaller degree of covariation among mod-

ules than other ways of partitioning the traits into subsets.

Alternatively, if the covariation between subsets of traits that

correspond to hypothesized modules is just as strong or

stronger as a large proportion of the alternative partitions, the

hypothesis of modularity can be rejected because a central

prediction is not met.

This article introduces methods that implement this ap-

proach to assess hypotheses about modularity in the context

of geometric morphometrics (Bookstein 1996; Dryden and

Mardia 1998). Geometric morphometrics has opened up new

possibilities for the study of morphological integration, but

poses specific challenges for the study of integration and

modularity. This article introduces the RV coefficient of

Escoufier (1973) as a scalar measure of the strength of associa-

tion between the coordinates of two sets of landmarks and

presents a new generalization of this measure for multiple sets

of landmarks. Hypotheses about the boundaries between

modules can be evaluated by partitioning the configuration in

different ways and comparing the RV coefficients between

subsets of landmarks. For contexts where the interactions that

define modules take place within continuous tissues, I provide

a method for limiting the comparisons specifically to subsets

of landmarks that are spatially contiguous. Finally, I briefly

discuss the effect of allometry and similar phenomena that

might enhance integration across modules. Some of these

methods improve on or replace the methods used in previous

analyses of integration in the Drosophila wing and the mouse

mandible (Klingenberg and Zaklan 2000; Klingenberg et al.

2003, 2004). In this article, I use both fly wings and mouse

mandibles as examples to demonstrate the new methods.

EXAMPLE DATA

To illustrate the methods discussed throughout this article, I

use two data sets concerning individual variation and fluctu-

ating asymmetry in fly wings and in mouse mandibles. The

flies were a sample of 109 female Drosophila melanogaster

(Oregon-R strain) reared under standard laboratory condi-

tions. For each fly, digital images of the left and right wings

were taken and a set of 15 landmarks was digitized (Fig. 2).

A preliminary analysis of measurement error using Procrustes

ANOVA (Klingenberg and McIntyre 1998) showed that its

effect on shape amounted to o5% of the component of fluc-

tuating asymmetry, and was therefore negligible. A previous

study, with a slightly smaller set of landmarks, found that the

entire wing is a single integrated module (Klingenberg and

Zaklan 2000). Here I use the new methods to reassess this

result and to test it against the alternative hypothesis that the

anterior and posterior compartments (Fig. 2) are distinct

modules (e.g., Thompson and Woodruff 1982; Cavicchi et al.

1991; Pezzoli et al. 1997).

A

B

Fig. 1. Delimiting modules by comparing different partitions of the
structure. Each diagram shows two modules (dashed lines) whose
parts are integrated internally by many interactions (arrows), but
which are relatively independent of each other because there are
only few interactions between modules. The bold lines indicate two
ways to partition the overall structure into two subsets. (A) The
subdivision coincides with the boundary between modules. (B) The
subdivision does not coincide with the modular boundary and
therefore goes across both modules. Note that the dividing line in
(B) intersects many more arrows than in (A). Accordingly, there
are more interactions between the parts in the two subsets, and a
stronger covariation between subsets is expected.

Fig. 2. Wing of Drosophila melanogaster with the landmarks used
in the example (circles) and the approximate location of the
boundary between the anterior and posterior developmental com-
partments (dashed line).
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A contrasting second data set of mouse mandibles is used

to illustrate the method for locating the boundary between

modules. Several studies have investigated the subdivision

into two main modules, the alveolar region in the anterior

part of the mandible and the ascending ramus in the posterior

part (Atchley et al. 1985; Cheverud et al. 1991, 1997; Leamy

1993; Mezey et al. 2000; Ehrich et al. 2003; Klingenberg et al.

2003, 2004). A set of 15 landmarks (Fig. 3) was digitized on

the mandibles of 90 mice for both the left and right sides.

Details on the specimens, the landmarks, the procedures for

correcting the effects of size and group structure, as well as a

full analysis of this data set have been published elsewhere

(Klingenberg et al. 2003).

For both data sets, the landmark configurations from both

sides were included in a generalized Procrustes fit (with

appropriate reflections; Klingenberg and McIntyre 1998;

Klingenberg et al. 2002). The averages of the configurations

of each individual were used to compute the among-individ-

ual covariance matrices, and the coordinate differences of left

and right sides (averaged over the replicate measurements)

were used to compute the covariance matrices of fluctuating

asymmetry (for details of the methods, see Klingenberg and

McIntyre 1998; Klingenberg et al. 2002). These covariance

matrices are the basis for the further analyses described

below.

QUANTIFYING AND TESTING COVARIATION
WITHIN A LANDMARK CONFIGURATION

Because the strength of covariation between different regions

of a structure is the criterion for assessing integration and

modularity in morphometric data (Fig. 1), a measure for

quantifying covariation between sets of landmarks is of crit-

ical importance. I recommend the RV coefficient (Escoufier

1973) as measure of association to replace the use of the trace

correlation (Hooper 1959) used recently in a similar context

(Klingenberg et al. 2003, 2004). The trace correlation shows

undesirable statistical behavior, for example, in models where

the entire variation is contained in a subspace of shape space

(e.g., a pure allometric model). Moreover, it also suggests

spuriously high covariation between sets if the sample size is

small (Mitteroecker and Bookstein 2007, Fig. 3).

The RV coefficient

This section introduces Escoufier’s (1973) RV coefficient as a

scalar measure of the strength of the association between two

sets of variables (see also Robert and Escoufier 1976; Robert

et al. 1985; Cléroux and Ducharme 1989). The two sets of

variables are contained in the random vectors x1 and x2,

consisting of p and q variables, and can be written as a com-

bined random vector x5 (x1, x2) of length p1q. This com-

bined vector of variables defines a covariance matrix that is

patterned as follows:

S ¼ S1 S12

S21 S2

� �

The diagonal blocks S1 and S2 correspond to the covari-

ance matrices of the two sets of variables each on its own,

whereas the off-diagonal block S12 is the matrix of covari-

ances between the variables of the two sets (the matrix S21 is

the transpose of S12).

The RV coefficient is calculated as follows:

RV ¼ trace S12S21ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace S1S1ð Þtrace S2S2ð Þ

p
The trace of a square matrix is the sum of its diagonal

elements. This formula can be interpreted as an extension of

the expression for the squared correlation coefficient between

two variables. The term trace(S12S21) in the numerator is the

sum of the squared covariances between the two sets of vari-

ables. This has been used as a measure of the total amount of

covariation between two sets of variables in the context of

partial least squares analysis (Bookstein 1991, p. 43; Rohlf

and Corti 2000). Similarly, the terms trace(S1S1) and

trace(S2S2) in the denominator can be interpreted as mea-

sures of the total amounts of variation in the two sets of

variables. The entire expression therefore represents the

amount of covariation scaled by the amounts of variation

within the two sets of variables, which is analogous to the

calculation of the correlation coefficient between two vari-

ables. Note, however, that the RV coefficient uses squared

measures of variances and covariances, and is therefore more

directly comparable to a squared correlation coefficient.

The RV coefficient takes values between zero and one, and

has a number of useful mathematical properties (Escoufier

1973; Robert and Escoufier 1976; Cléroux and Ducharme

1989). It is zero if all covariances between the two sets of

variables are zero (all elements of S12), which means that the

two blocks of variables are completely uncorrelated with each

other. The RV coefficient is one if one of the sets of variables

Fig. 3. A mouse mandible with the landmarks used in the analysis
(circles). The dashed line indicates the boundary between the
alveolar region (to the right) and the ascending ramus (to the left),
which have been suggested as possible modules.

Morphometric integration andmodularity 407Klingenberg



differs from the other only by some combination of a rota-

tion, reflection, scaling, or translation (i.e., if x15x2A1c,

where A is a square matrix for which AAT5bI for some

constant b40 and the identity matrix I, and c is a constant

vector of length q). As a consequence, the RV coefficient is

invariant under rotation, translation and uniform scaling.

Therefore, the RV coefficient does not depend on the choice

of alignment of the landmark configurations relative to the

coordinate system (but of course, it does matter how the two

subsets of landmarks are aligned relative to each other by a

Procrustes fit).

The effect of Procrustes superimposition

Analyses of integration can use two different approaches to

quantify the covariation between parts of a configuration of

landmarks. One possibility is to analyze the shape of the

configuration as a whole and to examine the covariation of

parts within it. The alternative is to analyze the shapes of the

parts separately as if they were entirely separate configura-

tions and to assess the association between the different

shapes. The difference between the two types of analysis is in

how they treat the information about the connection between

the subsets.

The first approach uses a single Procrustes fit for all land-

marks jointly and then examines the covariance of subsets of

landmarks within the overall configuration (I will call this the

‘‘simultaneous-fit’’ approach). It therefore explicitly considers

the information about the connection of the subsets. It is

possible that a portion of the covariation between subsets

does not arise from simultaneous variation within the two

subsets themselves, but stems from variation in the manner in

which the subsets are connected. For this approach, the sub-

sets of landmarks must be mutually exclusive, that is, each

landmark can only belong to one subset.

The second approach, which treats the subsets as entirely

separate configurations, uses two independent Procrustes fits

to analyze the shapes of the subsets of landmarks (I will call

this the ‘‘separate-subsets’’ approach). This approach ignores

the anatomical connection of the two subsets, and therefore

will record covariation between the subsets only if there are

joint changes of shape within each subset. The connection

between subsets can be taken into account by including land-

marks that are on the boundary between adjoining anatom-

ical units into both subsets. Because of the separate Procrustes

fits, such overlap of the subsets of landmarks does not unduly

inflate the estimates of covariation (but it does introduce a

certain amount of redundant information). This approach

ignores the information on the relative sizes of the different

regions, which may be another feature of covariation, unless

at least two landmarks are shared by the subsets.

To compare these two approaches directly, I subdivide the

Drosophila wing into subsets of landmarks in several different

ways (Fig. 4) and compute the RV coefficient for each pair of

subsets. The example demonstrates that the results of the two

types of analysis differ substantially (Table 1). For the sub-

divisions of the wing into mutually exclusive subsets, where

the two approaches can be compared directly, the simulta-

neous Procrustes fit produces RV coefficients that are consis-

tently higher, and often several times greater, than the ones

obtained from the approach with separate Procrustes fits for

the different subsets. Moreover, for the separate-subsets

method, the RV coefficient appears to increase with the de-

gree of overlap between the subsets of landmarks (compare

Fig. 4B–D; Table 1, parts B–D). The RV coefficients tend to

be somewhat higher for variation among individuals than for

fluctuating asymmetry, although this trend is not entirely

consistent. This difference between the two levels of variation

is small in comparison to the difference between the two

alternative methods.

Statistical tests of covariation

The statistical significance of the covariation between sets

of landmarks is usually established by means of a permuta-

tion test (e.g., Good 2000; Manly 2007). To simulate the null

hypothesis of complete independence between subsets, the

observations in the different sets of landmarks are permuted

randomly so that any association between sets is due to

chance only. This procedure is repeated a large number of

times, and each time a measure of covariation is computed

and compared with the original value. The proportion of

A B

C D

anterior

posterior

B

D
C

B

C
D

B

C

D

E

distal

central

proximal

Fig. 4. Possible subdivisions of the Drosophila wing. (A) The an-
terior and posterior compartments. (B) The division into wing sec-
tors according to intervein areas (Birdsall et al. 2000; Zimmerman
et al. 2000; Palsson and Gibson 2004). (C) The extended version of
the division into three sectors, covering all 15 landmarks. Note that
the sectors B and D are the same as the anterior and posterior
compartments. (D) Division into three mutually exclusive wing
sectors. (E) Division into proximal, central, and distal regions.
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permutation rounds in which the measure of covariation

matches or exceeds the original value is the significance level

of the test.

The standard permutation test is feasible for testing the

significance of covariation between sets of landmarks with the

approach using separate Procrustes fits. The RV coefficient

itself can be used as a test statistic. For each cycle of the

permutation procedure, the observations in one of the subsets

of landmarks are randomly reshuffled (i.e., the Procrustes co-

ordinates of the configurations in the subset) and the RV

coefficient of the resulting data set with the Procrustes coor-

dinates of the other subset is then computed. The significance

level of the test is the proportion of cases in which the RV

coefficient computed for these modified data matches or ex-

ceeds the value obtained from the original data.

For the example of fly wings, this procedure was used

to test the statistical significance of the RV coefficients com-

puted from separate Procrustes fits (Table 1). For each test,

10,000 permutation rounds were used. As indicated by the

low P-values, most of the associations between different wing

regions are highly significant. The exception concerns the an-

alyses of the proximal, central, and distal regions of the wing,

where none of the three tests for fluctuating asymmetry in-

dicates a significant association when analyzed with the ap-

proach of separate Procrustes fits (Table 1, part E).

When the simultaneous-fit method is used, however, this

straightforward version of the permutation test of covariation

is not feasible. Because the Procrustes superimposition finds

an optimal fit for all the landmarks in the entire configuration

jointly, it inevitably generates interdependence between differ-

ent regions. This effect may be quite substantial, if the differ-

ences in RV coefficients between methods of simultaneous

and separate Procrustes fits can be taken as an indication

(Table 1). Therefore, an adjustment needs to be made to the

permutation procedure so that it accounts for the effects of

the Procrustes fit. This can be done by including a new Pro-

crustes fit in every round of the permutation procedure

(Klingenberg et al. 2003, 2004).

This modified procedure starts with the Procrustes coor-

dinates, for which the RV coefficient between the landmark

positions in the two regions is computed. Then the observa-

tions in one of the two sets are randomly exchanged, so that

the association between sets is entirely by chance. After com-

bining the two parts again, the newly assembled configura-

tions will not be exactly in Procrustes superimposition

because the parts do not quite ‘‘fit together’’Fin other

Table 1. RV coefficients and P-values from the corresponding permutation tests for different subdivisions of

the Drosophila wing

Comparison

Variation among individuals Fluctuating asymmetry

Joint

Procrustes fit

Separate

Procrustes fits

Joint

Procrustes fit

Separate

Procrustes fits

RV P RV P RV P RV P

(A) Anterior and posterior compartments

Anterior and posterior 0.462 o0.0001 0.310 o0.0001 0.449 o0.0001 0.259 o0.0001

(B) Wing sectors according to Birdsall et al. (2000) and Zimmerman et al. (2000)

Sectors B and C 0.172 o0.0001 0.240 o0.0001

Sectors B and D 0.357 o0.0001 0.149 o0.0001 0.291 o0.0001 0.023 0.45

Sectors C and D 0.272 o0.0001 0.402 o0.0001

(C) Extended wing sector scheme

Sectors B and C 0.395 o0.0001 0.554 o0.0001

Sectors B and D 0.462 o0.0001 0.310 o0.0001 0.449 o0.0001 0.259 o0.0001

Sectors C and D 0.681 o0.0001 0.719 o0.0001

(D) Mutually exclusive wing sectors

Sectors B and C 0.260 o0.0001 0.081 0.0038 0.168 0.0006 0.062 0.027

Sectors B and D 0.279 o0.0001 0.063 0.011 0.241 o0.0001 0.044 0.062

Sectors C and D 0.398 o0.0001 0.226 o0.0001 0.263 o0.0001 0.062 0.013

(E) Proximal, central, and distal regions

Proximal and central 0.254 o0.0001 0.061 0.026 0.251 o0.0001 0.032 0.28

Proximal and distal 0.289 o0.0001 0.067 0.019 0.304 o0.0001 0.031 0.56

Central and distal 0.271 o0.0001 0.131 0.0001 0.201 o0.0001 0.009 0.82

The subdivisions of the wing referred to in parts A–E of the table are shown in the corresponding panels of Fig. 4. The tabled values are the RV
coefficients between pairs of subsets (RV) and the corresponding P-values from permutation tests. Nonoverlapping subsets of landmarks were analyzed
with separate as well as joint Procrustes fits. For overlapping sets of landmarks, only the analysis with separate Procrustes fits is feasible. The permutation
tests with joint Procrustes fits included a Procrustes fit in each round of reshuffling the observations in the sets of variables.
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words, the centroids (centers of gravity) will not match ex-

actly, there will be slight variation in centroid size, and there

also will be small differences in the overall orientation. To

redress these, a new generalized Procrustes fit needs to be

done. As a result, the coordinates of the combined configu-

rations vary only in shape, but the Procrustes fit also results in

a joint scaling, translation, and rotation that may induce a

certain amount of covariation between the parts of the con-

figuration. The RV coefficient can then be computed and

compared with the value obtained in the original data. The

landmark coordinates after reshuffling and re-fit are the ap-

propriate basis of comparison for test of independence be-

cause the random permutation of the coordinates from one

part of the configuration has eliminated systematic covaria-

tion and the Procrustes re-fit takes into account the covari-

ation induced by the superimposition itself. This procedure is

repeated for every round of the permutation test, each time

using the landmark coordinates from the original Procrustes

fit as the starting data.

A further modification of this test is required for analyses

of covariation in fluctuating asymmetry (Klingenberg et al.

2003). Because the overall configuration is required for the

scaling and rotation steps of the Procrustes fit, it would be

erroneous to use just the left–right asymmetries in the Pro-

crustes re-fitting procedure. For that reason, the overall mean

shape is added to every vector of the asymmetries of land-

mark coordinates. Adding a constant in this manner has no

effect on the covariation between the sets of landmarks, but it

ensures that the re-fitting in each round of permutations is

done correctly.

The permutation test with Procrustes re-fitting was applied

to all comparisons of mutually exclusive sets of landmarks in

the Drosophila wing. Most of the tests show significant co-

variation between the sets of landmarks (Table 1). For most

analyses, the differences in P values between the tests using

simultaneous or separate Procrustes fits are small, suggesting

that there may not be a large difference between the two

procedures. In a few cases, however, there are considerable

differences between the results for the two test procedures for

fluctuating asymmetry (Table 1, parts D and E). It appears

that the difference between the two test procedures depends

considerably on specific properties of the data. For instance, it

is conceivable that in the subdivision into proximal, central,

and distal subsets, which are fairly compact and distant from

each other (Fig. 4E), the relative sizes and arrangement of

subsets make a greater contribution to overall integration

than in the other subdivisions.

A measure of association for multiple sets of
landmarks

If there are more than two sets of landmarks, the RV coeffi-

cient can be used to assess the strength of association between

each pair of sets, but it does not provide an overall measure of

association among all the subsets simultaneously.

I define a new measure of association among multiple sets

of variables, the multi-set RV coefficient, as the average of all

pair-wise RV coefficients between sets:

RVM ¼
2

kðk� 1Þ
Xk�1
i¼1

Xk
j¼iþ1

RVði; jÞ:

In this formula, k is the number of sets of variables and

the notation RV(i, j) is used to designate the RV coefficient for

the sets i and j.

The multi-set RV coefficient can be tested against the null

hypothesis of independence among all sets of variables by a

permutation approach that extends the one outlined above

for two sets of variables. This can be considered as an overall

test of integration among the subsets. The test starts with the

Procrustes coordinates of the landmarks, from which the ob-

served value of RVM is computed (for analyses of fluctuating

asymmetry with a simultaneous Procrustes fit for all subsets,

the mean shape for all configurations is added to each of the

individual right–left differences). The null hypothesis of inde-

pendence among the sets of variables is simulated by ran-

domly permuting observations in each subset (one subset can

be left in the original order). If a separate Procrustes fit is used

for each subset of landmarks, then the RVM under the null

hypothesis can be computed directly and compared with the

original value. Conversely, if a simultaneous Procrustes fit

for all subsets is used, then a new overall Procrustes fit of the

permuted data is necessary in each permutation round before

computing the RVM value. This procedure is repeated a large

number of times, and the significance level of the test is the

proportion of rounds in which the RVM value for the per-

muted data matches or exceeds the value observed originally.

The multi-set RV coefficients for the subdivisions of the fly

wing into three nonoverlapping subsets (Table 2) are, by

definition, equal to the averages of the corresponding RV

coefficients for pairs of landmark sets (Table 1), and therefore

the results are necessarily similar. All but one of the permu-

tation tests indicated that the associations among sets of

landmarks were statistically significant (Table 2), which also is

in overall agreement with those for the pair-wise analyses of

landmark sets (Table 1).

LOCATING BOUNDARIES BETWEEN MODULES

The RV coefficient or multi-set RV coefficient can be used

to quantify covariation in the context of testing a hypoth-

esis about the boundary between modules (Fig. 1). If the hy-

pothesized partition coincides with the true subdivision of

the configuration into modules, the RV coefficient between
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subsets should be lower than is expected for alternative par-

titions of the configuration into subsets of landmarks.

In the following analyses, the comparisons are limited to

alternative partitions that consist of subsets containing the

same numbers of landmarks as the hypothesized modules.

The primary aim of this limitation is to ensure that the com-

parisons are ‘‘fair.’’ Holding constant the numbers of land-

marks in the subsets maintains a relatively homogeneous

behavior across the partitions that are being compared, and

avoids potential artifacts due to extreme sizes of the subsets.

For instance, it is often possible to obtain very weak covari-

ation between sets by choosing a partition that separates a

single landmark from all the others. Moreover, the limitation

to partitions with the same sizes of subsets also limits the

number of comparisons that need to be made, and thus makes

the comparison computationally feasible even with relatively

large numbers of landmarks.

Comparing alternative partitions

The most straightforward approach to evaluate a hypothesis

of subdivision of a configuration of landmarks into two

modules is to compute the RV coefficient for all possible par-

titions into subsets of the appropriate sizes. If the hypothesis

of modularity holds, the RV coefficient for the partition ac-

cording to the hypothesis should be the lowest value, or it

should at least be near the lower extreme of the distribution of

RV coefficients for all of the partitions. The RV coefficients

are computed from Procrustes coordinates resulting from the

simultaneous Procrustes fit for all landmarks together.

For partitioning a configuration of m landmarks into two

subsets of k and m� k landmarks, it is feasible to enumerate

all possible partitions as long as m is not too large. The

number of such partitions is the number of combinations of

k out of m objects, that is,

m
k

� �
¼ m!

ðm� kÞ!k!
:

In the special case where both sets contain the same num-

ber of landmarks (i.e., m52k), this number needs to be di-

vided by two because each possible partition is listed twice in

different orders, for example (1, 2) and (3, 4) as well as (3, 4)

and (1, 2). Overall, the number of possible partitions increases

very rapidly with the total number of landmarks in the con-

figuration. For instance, for the division of 10 landmarks into

two subsets of five, there are 126 possible partitions, whereas

there are 92,378 partitions of 20 landmarks into subsets of

10 each.

The complete enumeration of all possible partitions there-

fore may not be computationally feasible for landmark con-

figurations with more than about 20 landmarks. In this case,

random partitions of the configuration into subsets of the

appropriate number of landmarks can be used instead. I rec-

ommend a number of random partitions in the order of

10,000 for the comparison, which should provide a reasonable

characterization of the distribution of the RV coefficient.

A large number is needed because the primary interest con-

cerns the left tail of the distribution.

I have applied this approach to the Drosophila wing ex-

ample to re-evaluate the hypothesis that the anterior and

posterior compartments are modules (Figs. 2 and 4A). The

configuration of 15 landmarks is therefore subdivided into

subsets of seven and eight landmarks. Because the total num-

ber of different partitions into subsets of seven and eight

landmarks is 6435, it was feasible to enumerate them com-

pletely and to compute the RV coefficients for all of them

(Fig. 5). For both variation among individuals and fluctuating

asymmetry, the RV coefficient obtained for the partition into

anterior and posterior compartments (arrows in Fig. 5) is to

the right of the mode of the distribution of the values for all

possible partitions. For individual variation, 4374 of the par-

titions result in a lower RV coefficient, and for fluctuating

asymmetry, 5916 partitions yield a lower value, indicating

clearly that the observed value is not in the left tail of the

distribution. This means that the covariation between the

Table 2. Multi-set RV coefficients and P values from the corresponding permutation tests for different subdivisions

of the Drosophila wing

Comparison

Variation among individuals Fluctuating asymmetry

Joint

Procrustes fit

Separate

Procrustes fits

Joint

Procrustes fit

Separate

Procrustes fits

RVM P RVM P RVM P RVM P

(D) Mutually exclusive wing sectors

All three subsets 0.312 o0.0001 0.124 o0.0001 0.224 o0.0001 0.056 0.0013

(E) Proximal, central and distal regions

All three subsets 0.271 o0.0001 0.087 o0.0001 0.252 o0.0001 0.024 0.63

Only the subdivisions of the wing into three nonoverlapping subsets are considered (cf. Fig. 4, D, E, Table 1). The tabled values are the squared multi-
set trace correlations among subsets (RVM) and the corresponding P-values from permutation tests. The permutation procedure for joint Procrustes fits
included a new Procrustes fit in each round of permutation.
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anterior and posterior compartments is not weaker than it

would be expected for a random partition of the landmark

configuration. This result is evidence against the hypothesis

that the anterior and posterior compartments are separate

modules.

A quite different result emerges for the data set of mouse

mandibles, where the hypothesis is a subdivision into two

modules, the alveolar region and ascending ramus (Fig. 3).

This is also a subdivision of the whole configuration into

subsets of seven and eight landmarks, and therefore is directly

comparable to the fly wing example. The RV coefficients be-

tween subsets were computed for all 6435 alternative parti-

tions for both the variation among individuals and fluctuating

asymmetry (Fig. 6). For individual variation, only 113 par-

titions result in an RV coefficient that is lower than the one

observed for the subdivision into alveolar region and ascend-

ing ramus, and for fluctuating asymmetry, there are only 22

such partitions. Accordingly, the RV coefficient for the sub-

division is clearly near the lower extreme of the distribution of

RV coefficients (arrows in Fig. 6). This result is consistent

with the hypothesis that the alveolar region and ascending

ramus of the mouse mandible are distinct modules.

SPATIAL CONTIGUITY OF MODULES

A possible objection against the procedure outlined above is

that the set of all possible partitions of a landmark config-

uration is not a biologically realistic base of comparison. This

assemblage includes many subdivisions where one or both

subsets of landmarks are not contiguous, but are composed of

landmarks in different parts of configuration that are spatially

separated. Depending on the biological context of a study,

such spatially disjoint sets of landmarks may not be plausible

candidates for modules.

If the internal integration of modules relies on tissue-

bound interactions among their parts, modules cannot be di-

vided into components that are spatially separated from each

other, because such a separation would prevent interactions

between them. For instance, developmental fields, which are
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often the precursors of morphological modules, need to be

spatially contiguous because they are defined by signaling

interactions among nearby cells (e.g., Davidson 1993, 2001;

Carroll et al. 2001; Kornberg and Guha 2007). In biological

contexts such as this, it may therefore be preferable to con-

sider a set of landmarks as a possible candidate for a mor-

phological module only if it is spatially contiguous.

To study modularity in this context, it is necessary to

establish a procedure that limits comparisons to just those

partitions for which the subsets of landmarks are spatially

contiguous. This, in turn, requires a definition of spatial con-

tiguity that is computationally tractable. I use an approach

that is based on the theory of graphs, which can easily be

incorporated into the combinatorial framework of this anal-

ysis of modularity. Several graph-based approaches for stud-

ies of integration were briefly discussed by Chernoff and

Magwene (1999), whereas Gabriel and Sokal (1969) used

graphs as a criterion of spatial contiguity in geographic

analysis.

A definition of contiguity using adjacency graphs

A definition of spatial contiguity in sets of landmarks requires

a way to assess whether any two landmarks in the configu-

ration are neighbors. I offer a definition of contiguity that is

based on adjacency graphs, in which the nodes represent the

landmarks in the configuration and the edges connect neigh-

boring landmarks (Fig. 7A).

I start by providing a definition of contiguity for a single

set of landmarks. A set of landmarks is spatially contiguous if

every landmark of the set is connected by the edges of the

adjacency graph to every other landmark in the set either di-

rectly or indirectly through other landmarks that also belong to

the set. This definition ensures that it is possible to move

between any two landmarks of the set along the edges that

connect landmarks belonging to the set. For instance, in Fig.

7B, the set of landmarks marked by solid black dots and the

set of landmarks marked by hollow dots are both contiguous.

In contrast, the set of solid black dots in Fig. 7C is not con-

tiguous because it is divided into two parts at the base and the

tip of the fly wing, and any movement between the two parts

along the edges of the adjacency graph must pass through at

least one landmark of the other set (landmarks marked by

hollow dots).

The definition of a spatially contiguous set of landmarks

can be extended to a definition of a partition of the entire

configuration. A partition is spatially contiguous if it divides

a configuration into sets of landmarks that are all spatially

contiguous themselves. This means that a partition is only

considered spatially contiguous if all the resulting sets of

landmarks are spatially contiguous. For example, the parti-

tion of landmarks into two sets in the proximal and distal

parts of the wing form a spatially contiguous partition

(Fig. 7B). In contrast, a division into a central region and a

second set of landmarks at the base and the tip of the wing is

not spatially contiguous (Fig. 7C; but note that this would be

a spatially contiguous partition into three sets of landmarks).

Obtaining adjacency graphs

As a strictly geometric criterion to define adjacency of land-

marks, I use the Delaunay triangulation of the landmark

A

B

C

Fig. 7. Definition of spatial contiguity for sets of landmarks.
(A) An adjacency graph for the Drosophila wing. The edges of this
graph connect neighboring landmarks. This adjacency graph has
been obtained as the Delaunay triangulation (e.g., de Berg et al.
2000) of the landmark positions in the mean shape. A set of land-
marks is said to be contiguous if every one of its landmarks is
connected directly or indirectly to all other landmarks of the set by
the edges of this graph. (B) An example of a contiguous set of
landmarks (black circles). Within this set, all landmarks are con-
nected to each other either directly or indirectly via other land-
marks of the set. (C) An example of a set of landmarks that is not
contiguous. It consists of one group of three landmarks at the base
of the wing and another group near the wing tip (solid black cir-
cles), which are separated from each other by landmarks belonging
to the other set (open circles).
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positions in the average configuration (e.g., de Berg et al. 2000,

chapter 9). The Delaunay triangulation divides a configura-

tion of points into nonoverlapping triangles, so that none of

the points lies inside the circumcircle of one of the triangles. As

a result, the triangulation avoids very long and narrow trian-

gles as far as it is possible, given the whole configuration. The

connections through the edges of the triangulation can there-

fore serve as a criterion to determine which landmarks are

next to each other in the configuration (e.g., Fig. 7A).

It is possible to extend this scheme to three dimensions

because there is an equivalent to the Delaunay triangulation

in the plane. Such a Delaunay tessellation in three dimensions

divides the volume inside the convex hull of the landmark

configuration into nonoverlapping tetrahedra so that the

sphere that passes through the four vertices of each tetrahe-

dron does not contain any of the other landmarks. The edges

of this tessellation can be used to define the adjacency of

landmarks, just as in the two-dimensional triangulation.

Because the Delaunay triangulation uses only the geom-

etry of the mean shape, it cannot take into account any an-

atomical or other biological factors. To obtain an adjacency

graph that is biologically meaningful, the investigator may

decide to modify the graph by eliminating or adding some

edges. For instance, it may be necessary to modify the edges

of the adjacency graph if the outline of the configuration has a

complex shape. The Delaunay triangulation applies to the

entire region within the convex hull surrounding the land-

marks. This is appropriate if the structure represented by the

landmark configuration is convex itself, as is the case for the

fly wing (Fig. 7). If the structure has concave regions, how-

ever, such as the indentations between the attachment pro-

cesses of the mouse mandible (Fig. 3), the Delaunay

triangulation may have edges that are located outside of the

structure and may not correspond to biological links between

landmarks. These edges can be removed manually to limit the

criterion for spatial contiguity to the regions inside the con-

tour of the structure (dashed lines in Fig. 8). There may be

other reasons for modifying the adjacency graphs. The Del-

aunay triangulation may not always contain all the links that

are relevant from a biological perspective. For instance, for

quadrilaterals of nearby landmarks, the triangulation will

contain only one of the two diagonals, even if both are nearly

of the same length. It may therefore be desirable to add some

of those diagonals to the adjacency graph (dot-dashed lines in

Fig. 8).

A different problem applies particularly to studies of struc-

tures such as skulls, where the landmarks often are collected

on the surface only. Moreover, major anatomical features

such as the cranial vault and parts of the face are also or-

ganized by developmental interactions that take place near

the surface of the developing head. It is therefore questionable

whether the relationships among landmarks should be defined

by geometric proximity in the skull volume, which may link

landmarks of the cranial base with those of the skull vault.

Extensive alterations of the adjacency graph may be necessary

in situations like this.

Overall, the Delaunay triangulation should be taken only

as an initial approximation of the adjacency graph, which

may require substantial changes. The Delaunay triangulation

is useful as a starting point, however, because it can be easily

implemented in computer programs with widely available

algorithms (e.g., de Berg et al. 2000, chapter 9). For instance,

the MorphoJ software (Klingenberg 2008–2009) implements

the Delaunay triangulation in two or three dimensions, but

also provides the user with an interface for modifying the

adjacency graphs.

Application

Of the 6435 partitions of the landmarks of the fly wing into

sets of seven and eight landmarks, 655 divided them into two

sets that were both spatially contiguous. The distribution of

the values of the RV coefficient between the subsets of land-

marks covers a similar range as the distribution of all possible

partitions (Fig. 9). For the variation among individuals, 457

of these spatially contiguous partitions had RV coefficients

that were lower than the one between the anterior and pos-

terior compartments. Likewise, for fluctuating asymmetry,

578 spatially contiguous partitions had a RV coefficient lower

than that between the two compartments. The observed cor-

relations are thus in the top one-third of the distribution and

clearly not near the lower end of the distribution, as it would

be expected if the two compartments were distinct morpho-

logical modules. A comparison of the histograms in Figs. 5

and 9 shows that the limitation to only the spatially contig-

uous partitions did not lead to any major changes in the

Fig. 8. Possible problems with the Delaunay triangulations for
configurations with a complex outline. The outline of the mouse
mandible is indented in regions such as the space between the
incisor and molar teeth or between the muscle attachment pro-
cesses. Some of the edges of the Delaunay triangulation are there-
fore outside the contour of the mandible (dashed lines). These may
be omitted for the consideration of spatial contiguity. For each
quadrilateral of neighboring landmarks, the Delaunay triangula-
tion contains just one of the two diagonals; the second diagonal
may be added to the adjacency graph (dot-dashed lines; note that
this has not been done for all possible quadrilaterals).
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distribution of RV coefficients for either individual variation

or fluctuating asymmetry.

For the mouse example, only 95 of the 6435 partitions of

the configuration into two subsets of seven and eight land-

marks resulted in two contiguous subsets. For the variation

among individuals, only one of those 95 partitions resulted in

an RV coefficient lower than that observed for the hypoth-

esized partition into the alveolar part and ascending ramus

(Fig. 10). For fluctuating asymmetry, only two of the 95

contiguous partitions produced a lower RV coefficient. This

result underscores the previous finding that the RV coefficient

for the partition into the hypothesized modules is near the

lower end of the spectrum for the entire range of partitions

into seven and eight landmarks (cf. Fig. 6).

MORE THAN TWO MODULES

The method of comparing alternative partitions of a land-

mark configuration can also be applied when a hypothesis

specifies more than two subsets of landmarks. In this case, the

multi-set RV coefficient is used to quantify the covariation

among subsets.

A difficulty with this method is that the number of possible

partitions increases very rapidly with the total number of

landmarks. For a configuration of m landmarks that is sub-

divided into k subsets ofmi landmarks (i51, . . .,k, with allmi

summing up to m), the total number of possible partitions is

m!

Qk
i¼1
ðmi!Þ

;

if all the mi are different from each other. If some of the sets

have the same number of variables, then this number should

be divided by the factorial of the number of equal-sized sets to

avoid counting the same partition multiple times with the

subsets in different orders (e.g., for a subdivision into three

equal subsets, the division is by 3!56).

For a configuration of 15 landmarks, there are 630,630

possible partitions that produce three subsets of four, five, and
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Fig. 9. Histograms of the squared trace correlations for those par-
titions of the Drosophila wing that produced spatially contiguous
subsets of landmarks. The values of the squared trace correlation
between the subsets of landmarks in the anterior and posterior
compartments are indicated by arrows.
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six landmarks (e.g., Fig. 4D). For a subdivision of the same

configuration into three unequal subsets of seven, four, and

four landmarks (e.g., Fig. 4E), there are still 225,225 possible

partitions. Computing the multi-set RV coefficient for all

these partitions involves a substantial computational effort,

and it may therefore be reasonable to use a sufficiently large

number of random partitions of the landmarks. For most

purposes, 10,000 random partitions should be sufficient.

For the case study of the Drosophila wings, I ran analyses

for two different subdivisions of the landmarks into three

subsets (see Fig. 4, D and E and Table 2). The first example is

a subdivision along the anterior–posterior axis of the wing

into three subsets of four, five, and six landmarks (Fig. 4D).

Of the total 630,630 partitions of the wing into three subsets

of four, five, and six landmarks, the RVM value is less than

that for the original partition (Table 2) in 195,180 and 95,322

cases for individual variation and fluctuating asymmetry, re-

spectively. Neither of these RVM values is therefore near the

left extreme of the distribution, which is evidence against the

hypothesis that the three wing sectors in Fig. 4D are mor-

phological modules.

The second example concerned the division of the Droso-

phila wing into subsets of seven, four, and four landmarks

corresponding to proximal, central, and distal sectors (Fig. 4E).

There are 225,225 possible partitions of 15 landmarks into

subsets of seven, four, and four landmarks. Of these, 23,555

have RVM values for the variation among individuals that are

less than the hypothesized modules, and 73,235 partitions

have lower RVM values for fluctuating asymmetry. Again, the

RVM values for the partition according to the a priori hy-

pothesis are not unusually low by comparison with the dis-

tribution of RVM values for alternative partitions. Therefore,

a principal expectation of the hypothesis of modularity is not

met by these data.

Spatial contiguity of multiple modules

Just as for a partition into two subsets, it is also possible to

limit the comparison to spatially contiguous partitions with

more than two subsets. This can result in a drastic reduction

of the number of partitions because only a relatively small

fraction of the possible partitions are spatially contiguous.

For configurations with a moderate number of landmarks

and relatively few subsets, it is therefore usually feasible to use

a complete enumeration of contiguous partitions.

For the subdivision of the Drosophila wing into anterior,

middle, and posterior sectors (Fig. 4D), the set of landmarks

in the middle sector is not spatially contiguous with reference

to the adjacency graph in Fig. 7A. Therefore, this partition as

a whole is not spatially contiguous, and thus it is not mean-

ingful to make the comparison with alternative partitions that

are limited to be spatially contiguous. A possibility would be

to alter the adjacency graph so that all three sectors are spa-

tially contiguous.

For the partition of the wing into proximal, central, and

distal regions (Fig. 4E), limiting the comparison to the spa-

tially contiguous partition reduces the number of comparisons

from 225,225 to 1414. For these spatially contiguous 1414

partitions, the RVM values were less than the one for the

partition into proximal, central, and distal regions in 241

partitions for individual variation and in 523 partitions for

fluctuating asymmetry. Therefore, this result is inconsistent

with the hypothesis that the three regions are separate mod-

ules, because a large proportion of randomly chosen parti-

tions of the landmark configuration into contiguous subsets

yield weaker covariation among subsets. Overall, for both

individual variation and fluctuating asymmetry, this analysis

is consistent with the alternative that the Drosophila wing is a

single, fully integrated unit.

THE INFLUENCE OF ALLOMETRY

Allometry is the influence of size on shape (and other organ-

ismal properties), and can have a major effect on patterns of

integration, and therefore on the detection of modularity.

Because the effects of size affect all parts of the entire organ-

ism jointly, they can produce global integration throughout

the whole landmark configuration under study and may ob-

scure a possible modular structure. The balance between

modularity and such integrating processes may account in

part for the finding that modularity in empirical data sets is

not an ‘‘all-or-nothing’’ phenomenon, but that there is a gra-

dation of degrees of integration and modularity (Klingenberg

et al. 2003, 2004).

The effects of allometry can be addressed in a straightfor-

ward manner by first performing a multivariate regression of

shape on size to characterize allometry (e.g., Monteiro 1999).

The residuals from this regression represent the shape vari-

ation after subtracting the effects of allometry. Therefore, the

analyses outlined in this article can be carried out using the

covariance matrices of these residuals to analyze modularity

after removing the influence of allometry.

For the example of the Drosophila wing, a multivariate

regression of individual variation of shape on centroid size

shows that allometry is statistically significant (permutation

test with 10,000 random permutations, Po0.0001). Centroid

size accounts for 16.9% of the Procrustes variance, and thus

allometry is responsible for an appreciable part of the shape

variation in the sample. Accordingly, the correction for all-

ometry was made by computing the RV coefficients from the

covariance matrix of the residual from a multivariate regres-

sion of the Procrustes coordinates on centroid size. Even after

this correction, the RV coefficient for the covariation between

the landmarks in the anterior and posterior compartments is
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0.462, just as it is for the uncorrected covariance matrix

(Table 1). In the comparison with alternative partitions of the

landmarks into subsets, this RV coefficient is to the right of

the mode of the distribution of corrected RV coefficients for

the alternative partitions of the landmarks.

The same allometry correction can be applied to the

asymmetry component as well, by taking the residuals from

a multivariate regression of the signed asymmetries of shape

on the signed asymmetry of centroid size. This correction

removes the component of fluctuating asymmetry of shape

that is related to fluctuating asymmetry of size (and presum-

ably is a developmental consequence of it). This regression is

statistically significant (permutation Po0.0001) and accounts

for 7.3% of the fluctuating asymmetry of shape. The RV

coefficient between landmarks in the anterior and posterior

compartments is 0.425 for this allometry-corrected asymme-

try, which is slightly less than the original value of 0.449.

Because the allometry correction results in a reduction of the

RV coefficients for most partitions of the landmarks in the fly

wing, however, the RV coefficient for the anterior and pos-

terior compartments is still higher than the values for the

majority of possible partitions. In sum, the correction for

allometric effects produces only small changes the covariation

of landmarks between the anterior and posterior compart-

ments of the Drosophila wing.

The effect of correcting for allometry is more apparent for

the data set of mouse mandibles. The allometric regression

accounts for 18.4% of the individual variation of shape (per-

mutation Po0.0001). The correction for allometry reduces

the RV coefficient between the alveolar region and ascending

ramus from 0.292 to 0.219, and only seven of the 6435 pos-

sible partitions have a lower RV coefficient (none of the

95 contiguous partitions have a lower RV coefficient). For

fluctuating asymmetry, allometry accounts for 6.1% of the

variation (permutation Po0.0001). The allometry correction

reduces the RV coefficient between the two regions from 0.146

to 0.134, and only nine partitions have a lower RV coefficient

(only one of the contiguous partitions has a lower RV coeffi-

cient). Overall, the allometry correction reduces covariation

for the mouse mandibles and accentuates the relative inde-

pendence of the alveolar region and ascending ramus.

DISCUSSION

This article has introduced new methodology for investigating

morphological integration and modularity in configurations

of landmarks. In geometric morphometrics, morphological

modules manifest themselves as groups of landmarks that are

minimally correlated with other such groups. It is thus pos-

sible to evaluate hypotheses of modularity directly by com-

paring the strength of covariation for alternative partitions of

landmarks into subsets (Fig. 1). The RV coefficient (Escoufier

1973; Robert and Escoufier 1976) and its multi-set general-

ization can be used as measures of covariation among subsets

of landmarks. Depending on the biological context of a study,

the investigator may also require that morphological modules

are spatially contiguous. Adjacency matrices offer an opera-

tional criterion to define spatial contiguity of subsets of land-

marks. These methods are complementary to other methods

for finding modules and fitting models of covariance structure

(Monteiro et al. 2005; Goswami 2006a, b; Mitteroecker and

Bookstein 2007; Márquez 2008; Zelditch et al. 2008). I have

illustrated these methods with two case studies concerning

the variation among individuals and fluctuating asymmetry in

the Drosophila wing and the mouse mandible.

Quantifying covariation in landmark
configurations

The analysis of covariation in fly wings revealed substan-

tial differences in RV coefficients, depending on whether the

Procrustes fit was done jointly for the whole landmark con-

figuration or separately for each part (Tables 1 and 2).

Unsurprisingly, the RV coefficients were much higher for the

joint Procrustes fit than for separate Procrustes fits. For the

majority of the analyses, the outcomes of the permutation

tests were similar, but for some of the RV coefficients, the test

for the procedure with separate Procrustes fits was not sig-

nificant.

The difference between the two approaches may partially

explain the contrasting results of different published studies.

Whereas analyses based on joint Procrustes fits have under-

scored the integration across the Drosophila wing (Klingen-

berg and Zaklan 2000), studies based on separate Procrustes

fits have reported low phenotypic and genetic correlations and

differences in the genetic architecture of principal components

of shape for different subsets of landmarks (Birdsall et al.

2000; Zimmerman et al. 2000; Palsson and Gibson 2004;

Dworkin and Gibson 2006). The results obtained here

(Tables 1 and 2) show that such discrepancies can result

from differences in the analyses used, rather than contradic-

tions of the data.

Both approaches have been used extensively for analyses

of integration in other study systems. For rodent mandibles,

some authors used the simultaneous-fit method (Klingenberg

et al. 2003; Márquez 2008; Zelditch et al. 2008) and others

used separate Procrustes fits (Monteiro et al. 2005). Likewise,

some studies of integration in the skulls of humans and other

mammals were based on the simultaneous-fit approach

(Bookstein et al. 2003; Goswami 2006a, b; Mitteroecker and

Bookstein 2008), whereas others used separate subsets (Bastir

and Rosas 2005, 2006; Cardini and Elton 2008).

These differences raise the question of which method

should be used for future studies. The differences in results

reflect the differences in the information considered by the
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two approaches. Whereas the method of separate Procrustes

fits exclusively considers the shapes of parts, each taken in

isolation, the analysis based on a joint Procrustes fit also

concerns covariation in the relative sizes and arrangement of

the different parts. Therefore, the choice of the method should

be based on whether the primary interest is in the covariation

of individual parts or in the joint variation of the overall

structure as a whole. The estimated covariation in the simul-

taneous-fit method can be criticized for being ‘‘inflated’’ by

the joint Procrustes fit, whereas it can be seen as a disadvan-

tage that the separate-subsets method ‘‘misses’’ some features

of the landmark configuration, namely the relative sizes and

positions of the subsets. There is no absolute ‘‘right’’ or

‘‘wrong’’ in the choice of these methods, and investigators

should choose the method that is most suitable for the context

of a particular study, or present the results for both ap-

proaches. Evidently, comparisons between different studies

need to take into account the difference between the two

approaches.

Evaluating hypotheses of modularity

The analyses of the two example data sets yielded contrasting

results. The analysis of the Drosophila wing indicates that

anterior and posterior compartments (Fig. 2) are not separate

modules. The covariation between the landmarks in the two

compartments is not any weaker than it would be expected

for an arbitrary partition of the wing into two subsets of

landmarks, regardless of whether all alternative partitions are

considered or just the spatially contiguous ones (Figs. 5 and

9). Strong covariation within modules and relative indepen-

dence between modules are a defining criterion for modular-

ity, and this expectation is clearly not met for the fly wings.

This confirms the results of an earlier study, which used

principal component analyses and partial least squares ana-

lyses to compare the patterns of covariation of landmarks

throughout the entire wing with the patterns of covariation

between the two compartments (Klingenberg and Zaklan

2000). Because the two analyses revealed congruent patterns,

they were consistent with an extreme model of integration in

which the entire wing is a single, fully integrated module. The

present analyses extend these findings by considering addi-

tional subdivisions of landmarks along the proximal–distal or

anterior–posterior axes of the wing (Fig. 4, Tables 1 and 2).

All of these subdivisions showed fairly strong and statistically

significant covariation between parts for both individual vari-

ation and fluctuating asymmetry, and none of the subdivi-

sions that were considered resulted in a degree of covariation

that was lower than what might be expected for a random

partition of the landmarks. Therefore, these results are con-

sistent with the model of the fly wing as a single, fully inte-

grated module. The weak effect of the correction for allometry

suggests that allometry is not the primary factor responsible

for integration in the fly wing.

In contrast to the strong integration in the Drosophila

wing, there is evidence for modularity in the mouse mandible.

The results of the analyses presented in this article conform to

the hypothesis that the alveolar region and ascending ramus

are separate modules (Fig. 3; Atchley et al. 1985; Leamy 1993;

Cheverud et al. 1997; Mezey et al. 2000; Ehrich et al. 2003;

Klingenberg et al. 2003, 2004). Both for variation among in-

dividuals and for fluctuating asymmetry, the RV coefficients

for this subdivision are consistently among the lowest of any

possible partition of the configuration (Figs. 6 and 10). This

result strengthens the findings from an earlier analysis of the

same data set with only a limited number of alternative par-

titions (Klingenberg et al. 2003). A similar approach, when

applied to the variation of the effects of quantitative trait loci,

produced a somewhat ambiguous result, which may have re-

sulted from the limited sample size of 33 loci (Klingenberg

et al. 2004).

The RV coefficients for all possible partitions of the mouse

mandible vary within a fairly narrow range, particularly for

fluctuating asymmetry (Figs. 6 and 10). Even though the

partition into the two hypothesized modules has one of the

very lowest RV coefficients, the covariation for other parti-

tions is not drastically higher. This confirms the previous re-

sults that modularity in the mandible can be a matter of

degrees (Klingenberg et al. 2003, 2004). Moreover, other

studies have considered subdivisions of rodent mandibles into

more than two parts and found support for such more com-

plex models of modularity as well (Monteiro et al. 2005;

Márquez 2008; Zelditch et al. 2008).

This example illustrates that the comparison of the RV

coefficient for the partition of interest to the distribution of

RV coefficients for the alternative partitions can provide more

information than the P-value from a statistical test would.

The proportion of partitions for which the RV coefficient is

less than or equal to the RV value for the partition of interest,

which can be interpreted as the analog of such a P-value, is

one piece of information that can be obtained. Other infor-

mation, such as the range of RV coefficients in the possible

partitions, is also critically important for interpreting the pat-

terns of modular variation in a landmark configuration.

Spatial contiguity of modules

This article presents an operational approach for limiting the

comparisons of alternative partitions to those that are spa-

tially contiguous. Spatial contiguity is relevant in the context

of many morphological studies (e.g., Chernoff and Magwene

1999). First, if morphological modules are to be coherent an-

atomical units, spatial contiguity is an important property

defining their coherence and individuality as units (this is

different, e.g., for functional modules, which conceivably can
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consist of several anatomically disjoint parts that interact in

performing a function; Breuker et al. 2006). Moreover, if the

internal integration of morphological modules originates from

tissue-bound developmental interactions within their precur-

sors, they are likely to relate to spatially defined developmen-

tal units such as embryonic fields (e.g., Davidson 1993;

Gilbert et al. 1996; Carroll et al. 2001; Kornberg and Guha

2007). For analyses of modularity in these contexts, is there-

fore reasonable to limit the comparisons to partitions that

divide a landmark configuration into subsets that are all spa-

tially contiguous.

This restriction to spatially contiguous partitions also sub-

stantially reduces the number of partitions for which the co-

variation among sets of landmarks needs to be quantified, and

therefore diminishes the computational effort required. For

the subdivision of the Drosophila wing into two subsets, just

over 10% of the possible partitions were spatially contiguous.

For the divisions into three subsets, this proportion was

o1%. The specific proportions depend on the number and

sizes of subsets and on the arrangement of landmarks, and

will therefore differ from one data set to another. Neverthe-

less, it is clear that limiting the comparisons to spatially con-

tiguous partitions can slow the explosive growth of the

number of possible partitions with increasing numbers of

landmarks in the configuration and increasing numbers of

subsets. Analyses of modularity with this approach are there-

fore computationally feasible even with substantially more

landmarks than were used in this article.

The adjacency graph is crucial for this definition of spatial

contiguity in configurations of landmarks. The Delaunay tri-

angulation is usually a reasonable starting point and may be

directly usable as the adjacency graph, such as the example of

fly wings (Fig. 7). It is important to note, however, that the

Delaunay triangulation only takes into account geometric in-

formation and cannot take into account the anatomical and

other biological details that are relevant for the connectivity

among landmarks in the context of a particular study (see also

Chernoff andMagwene 1999). In the majority of applications,

therefore, it is to be expected that the investigator needs to

modify the graph. These changes can involve removing edges

of the triangulation that are outside the outline of the struc-

ture or inserting additional edges between landmarks, such as

the second diagonal in quadrilaterals of landmarks (Fig. 8).

These alterations demand some biological judgment by the

investigator and will depend on the context of the study.

Allometry and other external factors

Allometry, the effect of size on shape, is expected to have a

simultaneous effect on all parts of a structure or even on the

whole organism. Accordingly, it is expected to exert an in-

tegrating influence on morphological structures and thereby

to counteract modularity. Similarly, multiple parts of an or-

ganism may respond jointly to environmental changes, and

phenotypic plasticity may thus also act as an integrating fac-

tor. If modularity is of primary interest, it is thus reasonable

to correct for the effects of allometry or other such factors.

I used regression to correct for effects of size, that is, the

analysis of modularity uses the covariance matrix of the re-

siduals from a regression of the shape variables on centroid

size (e.g., Loy et al. 1998; Monteiro 1999). For the two data

sets used in this article, this allometric correction had different

effects. For the Drosophila wings, there was little effect of the

correction, whereas a somewhat clearer modular structure

emerged for the mouse mandibles (i.e., the allometric correc-

tion diminished the covariation between the hypothesized

modules more than the covariation between other subsets of

landmarks).

An alternative to the regression approach is the method

proposed by Mitteroecker and Bookstein (2007, 2008), which

is based on a factor-analytic approach. They identify common

factors of variation affecting the whole structure jointly and

remove their effect by projection. This method eliminates all

the variation in the direction of the shape tangent space that

corresponds to the common factors, and therefore removes all

variation in that dimension of shape tangent space. A similar

projection was also used by Goswami (2006b), who removed

the first principal component, which primarily contained vari-

ation of size and size-related shape, from size-and-shape data

before analyzing integration and modularity.

For external factors that are of a categorical nature (e.g.,

treatment vs. control, male vs. female, different populations),

the correction can be made easily by using the pooled within-

group covariance matrix for the analyses of integration and

modularity. For computing pooled within-group variances

and covariances, the deviations of the observations of the

group averages of the variables are used instead of the de-

viations from the grand mean. Accordingly, this method

makes a correction by subtracting the differences among the

group means. Versions of this type of adjustment for group

difference have been widely used (e.g., Klingenberg et al. 2003;

Mitteroecker and Bookstein 2008). This method assumes that

the groups share the same covariance matrix. If this assump-

tion is violated, the pooled within-group covariance matrix

may still be a useful compromise between groups, but some

caution is advised (e.g., more variable groups have a greater

influence on the joint estimate).

Perspective

Some adjustments to the methodology presented here are

necessary for landmark configurations with object symmetry

(e.g., Klingenberg et al. 2002), that is, for configurations that

are symmetric in themselves. This is often encountered in bi-

ological data, for example in studies of skulls. Morphometric

data sets of this type consist of paired landmarks on the left
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and right sides and single landmarks in the midline or median

plane (which is also the axis or plane of symmetry). This

structure of the data imposes additional restrictions on the

way partitions of the landmarks are formed, because the

paired landmarks should be included in a subset as pairs, so

that corresponding landmarks from the left and right sides

either both belong to a subset or are both excluded from it.

Similarly, adjacency graphs need to be symmetric, so that

corresponding landmarks are either connected or uncon-

nected on both sides. To decide whether a subdivision of

landmarks is spatially contiguous, only to the paired land-

marks of one side and the unpaired landmarks are considered.

For instance, a subset of landmarks from the cheek region can

be contiguous even if the mid-facial region that separates the

left and right cheeks does not belong to the subset.

The methods introduced in this article are implemented for

two- and three-dimensional data in the MorphoJ program

package (Klingenberg 2008–2009). The program also incor-

porates the adjustments for object symmetry.

This article has introduced methods for evaluating hy-

potheses concerning the boundaries of modules that are given

at the outset of the study. It has not considered the problem of

an exploratory search for modules in a configuration of land-

marks. The same general approach of comparing the strength

of covariation among alternative partitions can be used in

that context as well, but that application raises a range of

additional questions that will be addressed elsewhere.
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