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There is considerable interest in the evolution of morpho-
logical traits, and morphometric studies in combination with
the multivariate theory of quantitative genetics can provide
a detailed understanding of the variation and evolutionary
potential of these traits. For both morphometrics and quan-
titative genetics, new and improved techniques have been
established recently (e.g., Dryden and Mardia 1998; Lynch
and Walsh 1998). The combination of these two approaches
makes it possible to study genetic variation with explicit
reference to the geometry of the structure under investigation
and to interpret the results in their anatomical context. Ex-
amples include studies using classical quantitative genetic
designs (e.g., Arnqvist and Thornhill 1998; Currie et al. 2000;
Klingenberg and Leamy 2001) and analyses of quantitative
trait loci (Zimmerman et al. 2000; Klingenberg et al. 2001;
Workman et al. 2002).

In a recent paper, Monteiro et al. (2002) proposed a
univariate estimate of heritability for shape based on Pro-
crustes distance, a measure of the extent of difference be-
tween pairs of landmark configurations. The method ex-
tracts a univariate heritability estimate from the inherently
multidimensional shape data by assuming the model of
isotropic variation (Goodall 1991), which presumes that
there is an equal amount of nondirectional variation at each
landmark and that the landmarks are independent of one
another. Monteiro et al. (2002, pp. 565, 569) suggest that
this univariate heritability estimate can be used to assess
whether the relative amount of genetic versus phenotypic
variation differs among populations in space and time, and
to examine whether nonexisting shapes should be ex-
plained by selection or developmental constraints. They
illustrate their method with a case study of shape variation
in honeybee wings.

The assumptions of the isotropic model, on which the
method of Monteiro et al. (2002) is based, are often unre-
alistic—even in the authors’ own dataset. Moreover, these
assumptions also have strong implications for the compar-
ison of shape variation among populations and for the study
of genetic constraints. Another difficulty is that the exper-
imental design of the case study of Monteiro et al. (2002)
is not large enough to characterize the genetic variation in
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all dimensions of shape space, and is therefore not sufficient
to assess the method.

This comment provides a more explicit explanation of
the heritability estimate, based on the multivariate theory
of quantitative genetics (Lande 1979; Cheverud 1984), to
highlight the assumptions inherent in the model used by
Monteiro et al. (2002) and to demonstrate the implications
that these assumptions have for the usefulness of the her-
itability estimate. A previous study (Klingenberg and Lea-
my 2001), which was also based on the combination of
geometric morphometrics and quantitative genetics, but
which used a fully multivariate approach, serves as a basis
for comparison.

Quantitative Genetics of Shape and the
Concept of Heritability

Shape is an inherently multivariate concept. Even rel-
atively simple shapes such as configurations of only a few
landmarks can vary in many ways by relative shifts of the
landmarks against one another. In geometric morphomet-
rics, each shape is represented by a point in a multi-
dimensional shape tangent space (Rohlf 1999; Monteiro et
al. 2000), which is amenable to analysis by the methods
of multivariate statistics. The multivariate equivalent to
the univariate breeders’ equation for predicting the re-
sponse to selection Dm 5 h2s (e.g., Falconer and Mackay
1996) is the equation Dm 5 GP21s (Lande 1979), where
Dm and Dm are the univariate and multivariate response to
selection, h2 is the heritability, G is the additive genetic
covariance matrix, P the phenotypic covariance matrix, and
s and s are the univariate and multivariate selection dif-
ferentials, respectively. Whereas Dm and s can be fully
characterized by their magnitude, their multivariate
equivalents have both a magnitude and direction. More-
over, the vectors s and Dm will not have the same direction
unless s is an eigenvector of GP21 (for further details, see
Klingenberg and Leamy 2001). Therefore, both the mag-
nitudes and directions of s and Dm need to be taken into
account.

The difference between two shapes can be quantified by
their Procrustes distance (e.g., Dryden and Mardia 1998).
It is important to note, however, that Procrustes distance
only measures the magnitude of shape differences, but ig-
nores their direction, because it does not consider which
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landmarks shift against each other or in which anatomical
directions those landmarks move. In practice, it is conve-
nient to use the Euclidean distance in shape tangent space,
which is a very close approximation of Procrustes distance
for the small amounts of shape variation typically found in
intraspecific studies. The lengths of the vectors s and Dm
can also be expressed in units of Procrustes distance in this
manner, e.g., \s\ 5 (sTs)0.5, where the superscript ‘‘T’’ de-
notes the vector transpose. Because s and Dm each have a
specific direction in shape space, the lengths of these vectors
cannot fully characterize the selection differential or the
response to selection.

Monteiro et al. (2002) use Procrustes distance as the basis
for their univariate method for assessing genetic and phe-
notypic variation in shape, and therefore ignore the direc-
tionality in shape tangent space. The justification for this is
the isotropic model of Goodall (1991), which assumes that
there is the same amount of variation around the average
shape at each landmark, that the variation at each landmark
is equal in all directions, and that the variation is indepen-
dent among landmarks. This model implies that there is an
equal amount of variation in each direction of the shape
tangent space. Therefore, the genetic and phenotypic co-
variance matrices can be written as G 5 I and P 5 I,2 2s sA P
where I is an identity matrix and and are scalar con-2 2s sA P
stants corresponding to the additive genetic and phenotypic
variances that are equal for all dimensions. In this case, the
ratio h2 5 / can be defined as the shape heritability as2 2s sA P
proposed by Monteiro et al. It follows that Dm 5 h2s, and
therefore also \Dm\ 5 h2\s\ (Monteiro et al. 2002, p. 569).
In this model, all landmark coordinates or dimensions of
shape space are equivalent, and it is possible simply to sum
up variation to estimate h2 as a scalar quantity. There is no
need to keep track of the directions of variation because the
isotropic model specifically assumes that there is no direc-
tionality.

The isotropic model is not the only situation where the
use of Procrustes distance would be justified. The univariate
approach is also applicable if the additive genetic and phe-
notypic covariance matrices of the coordinates in shape tan-
gent space are proportional, that is, if G 5 cP for some
constant c (0 , c , 1; the isotropic model is a special case
of this situation). In this case, the heritability can be defined
as h2 5 c for all shape variables, and would also be correctly
estimated with the procedures outlined by Monteiro et al.
But even though phenotypic and genetic covariance matrices
often are related to some degree (e.g., Cheverud 1988; Roff
1997), exact proportionality must be considered the excep-
tion.

Apart from these special cases, however, the ratio \Dm\/
\s\ will differ according to the direction of s in shape tangent
space (e.g., Klingenberg and Leamy 2001, Fig. 6). Therefore,
contrary to the recommendation of Monteiro et al. (2002, p.
569), the univariate breeders’ equation can normally not be
used to predict the magnitude of the selection response for
shape. This means that selection for each scalar shape var-
iable will, in general, have a different heritability. Therefore,
no single value can represent the overall heritability of shape
as a whole with the same predictive utility that heritability
has in the univariate context.

The Case Study of Bee Wings

Monteiro et al. (2002) illustrate their method with a case
study on honeybee wings, which estimates the G matrix from
the variation among the means of the 21 bee colonies, each
represented by 10 bees (it is assumed here than nonadditive
genetic and common-environment effects are negligible, as
the authors argue on p. 567).

Test of the model assumptions

I first examine the assumption of isotropic shape vari-
ation for that dataset. Monteiro et al. (2002, p. 568) report
that the first relative warp of the P matrix, that is, the first
principal component (PC) in shape tangent space, takes up
16.5% of the total shape variation. I simulated the corre-
sponding isotropic distribution in tangent space, generat-
ing 10,000 random datasets, each consisting of 210 ob-
servations with spherical variation in 36 dimensions (mul-
tivariate normal distribution with means zero for all
variables and with an identity matrix as the covariance
matrix). On average, the first principal component ac-
counted for 5.3% of the total variance, and in none of these
simulation runs for as much as 16.5%. Therefore, the
dataset shows a highly significant deviation of the P matrix
from the isotropic model because variation is overly con-
centrated in some dimensions of shape space. This is also
consistent with the scatter of Procrustes-superimposed
configurations around the overall consensus (Monteiro et
al. 2002, Fig. 1B), where some landmarks appear more
variable than others, and some show clearly directional
scatter. The misfit of the isotropic model in this case is
not unusual, because patterns of shape variation en-
countered in morphometric studies are typically noniso-
tropic. These deviations from isotropy reflect directional
variation and interrelationships among landmarks, and thus
may be of biological interest on their own (Klingenberg
and McIntyre 1998; Badyaev and Foresman 2000; Debat
et al. 2000; Klingenberg and Zaklan 2000; Klingenberg
2002).

It is more difficult to assess whether the P and G matrices
may be proportional. Monteiro et al. (2002) found that these
matrices show significant similarities with a matrix corre-
lation of 0.57, but this value is also sufficiently far from
1.0 to indicate it is unlikely that the matrices are exactly
proportional. Therefore, the conditions for using the uni-
variate approach based on Procrustes distance appear not to
be fulfilled.

Sample size and dimensionality

The dataset also illustrates a further pitfall. Monteiro et
al. (2002) analyzed configurations of 20 landmarks, for
which the shape tangent space has 36 dimensions. They
estimated genetic variation from the variation among the
shape averages of 21 bee colonies, yielding 20 degrees of
freedom among the means. The variation among colonies
therefore defines a 20-dimensional subspace at most, and
the estimated G matrix can therefore only span just over
half of the dimensionality of the shape tangent space. In
particular, it will be impossible to use such a dataset to
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assess whether there are genetic constraints; that is, to
determine whether dimensions without associated varia-
tion are truly invariant or lack variation merely due to
inadequate sampling. The quantitative genetic analysis of
shape is inherently a very ambitious project, and accord-
ingly, such studies require sufficiently large experimental
designs.

A Different Example: Mouse Mandibles

It is instructive to contrast the approach of Monteiro et al.
(2002) with a fully multivariate approach using the results
of a quantitative genetic study of geometric shape variation
in the mouse mandible, where genetic parameters were es-
timated from an unbalanced parent-offspring design with re-
stricted maximum-likelihood methods (Klingenberg and Lea-
my 2001). The total sample consists of 1241 specimens and
considers 11 landmarks, so that the shape tangent space has
18 dimensions, of which only 15 could be considered due to
software limitations. The first principal component of the P
matrix takes up 17.8% of the total shape variation. In sim-
ulations of spherical variation for this dimensionality and
sample size, the PC1 accounts for 8.0% of the variation on
average. This 2.2-fold excess of the observed value is some-
what less than the corresponding 3.1-fold excess for the bee
wing data, so that the deviation from the isotropic model at
least does not appear greater for the mouse mandibles than
for the bee wings. Moreover, the matrix correlation between
the P and G matrices was 0.88 (Klingenberg and Leamy 2001,
p. 2346) for the mouse mandibles as compared to 0.57 for
the bee wings (Monteiro et al. 2002, p. 569). These matrices
do not seem any less proportional for the mouse mandibles
than for the bee wings.

The univariate heritability for shape of the mouse man-
dibles, following the approach of Monteiro et al., can be
estimated as the ratio of the total variance of the G matrix
(2.35 3 1024, in units of squared Procrustes distance) to
that of the P matrix (8.05 3 1024) and amounts to 0.29. In
reality, however, the heritabilities of possible shape vari-
ables range from zero to 0.73 (Klingenberg and Leamy 2001,
Fig. 7). The univariate estimate averages over the dimen-
sions of shape tangent space and so suggests a moderate
heritability. It thereby obscures the fact that shape variables
with high heritability exist side by side with others that show
strong genetic constraints. This example illustrates clearly
that the application of the univariate breeders’ equation to
Procrustes distance (Monteiro et al. 2002, p. 569) can over-
or underestimate the magnitude of the response to selection
by several times.

Suggested Applications of the Heritability Estimate

As possible applications for the univariate estimate of
shape heritability, Monteiro et al. (2002, pp. 565, 569)
specifically suggest the detection of constraints, compar-
isons of genetic variation in different populations, and rate
tests for the reconstruction of past selection. In all these
contexts, however, there are significant difficulties with
the method because it ignores the directionality of varia-
tion.

For determining the potential and constraints for the evo-

lution of shape, the direction of variation in shape space
is critical, because genetic constraints are identified as di-
rections in shape space for which there is no genetic var-
iation (e.g., Cheverud 1984; Maynard Smith et al. 1985;
Kirkpatrick and Lofsvold 1992; Schluter 1996). The only
‘‘constraint’’ that can be accommodated by the model of
isotropic shape variation is the complete lack of any ge-
netic variation. Otherwise, the isotropic model explicitly
assumes the absence of constraints, because genetic and
phenotypic variations are distributed equally over all di-
mensions of shape space. In most cases where constraints
exist, they will not be due to the complete lack of any
genetic variation, but to the absence of variation in specific
aspects of shape. It is the very nature of the isotropic model
that it practically excludes constraints a priori, and there-
fore empirical studies searching for constraints should not
assume that model. The procedure of averaging over the
dimensions of shape space is not an effective way to test
for constraints, because it would systematically conceal
real constraints in some shape dimensions with variation
from other dimensions.

While the suggested approach of Monteiro et al. (2002,
pp. 565, 569) to base population comparisons in space and
time on a scalar measure of variation would be convenient,
unfortunately there is no scalar measure that can charac-
terize multivariate variation sufficiently. Just as shape av-
erages in geometric morphometrics are compared among
populations by using multivariate methods (e.g., Monteiro
and Abe 1999; Duarte et al. 2000), comparisons of variation
within populations should also consider the multidimen-
sional nature of shape. Methods for characterizing and com-
paring phenotypic or genetic covariance matrices have been
established (e.g., Cheverud 1988; Kohn and Atchley 1988;
Shaw 1991; Phillips and Arnold 1999; Roff et al. 1999) and
can be used for geometric morphometric data (e.g., Klin-
genberg and McIntyre 1998; Debat et al. 2000; Klingenberg
and Leamy 2001).

Retrospective analyses of phenotypic evolution, such as
rate tests for distinguishing selection from random drift (Tur-
elli et al. 1988; Spicer 1993), are also inherently multivariate
problems when they are to be applied to multidimensional
features such as shape (Lande 1979). They are in many ways
analogous to discriminant analysis (e.g., discussion in Mar-
roig and Cheverud 2001), and therefore must take into ac-
count the covariance structure of the shape variables. The
recommendation of Monteiro et al. (2002, p. 569) to use their
heritability estimate for shape in such tests is therefore jus-
tified only when the isotropic model of shape variation ap-
plies. All the suggested uses of the shape heritability estimate
therefore make strong assumptions that are rarely fulfilled in
empirical data.

Conclusions

Approaches based on Procrustes distance have a useful
role in morphometrics because they provide summary sta-
tistics about the amount of shape variation. For instance, in
multivariate regression analyses, the relative amounts of
explained and residual variation can be assessed (Monteiro
1999), or the approach can provide a measure of the relative
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magnitude of individual variation, fluctuating asymmetry,
and measurement error (Klingenberg and McIntyre 1998).
In such situations, the specific patterns of variation are not
the focus of the analysis, and Procrustes distance measures
are informative as summary statistics even in cases where
the isotropic model does not hold. Even there, however,
methods based on Procrustes distance may have less statis-
tical power than fully multivariate methods that consider all
the available shape information (e.g., Klingenberg et al.
2002).

For quantitative genetic studies of shape, however, a fully
multivariate approach is quintessential. Heritability, a uni-
variate concept, has not played a role in the multivariate
theory of quantitative genetics; if one insists on having a
multivariate equivalent for heritability, then it is the matrix
GP21 (Roff 2000; Klingenberg and Leamy 2001). Numerous
morphometric studies have shown that shape variation is
usually localized and richly structured. The very strength
of geometric morphometrics is that the analyses can account
explicitly for the spatial heterogeneity that is associated
with the anatomy and the ontogenetic origins of biological
structures. Although it is mathematically possible to com-
pute a ‘‘global’’ heritability estimate by averaging across
all dimensions of shape space, such an overall measure must
ignore the spatial structure of variation, and is therefore
fundamentally at odds with the goals of geometric morpho-
metrics.
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